89 research outputs found

    Strategic Alignment in Cybersecurity Information Sharing: A Multidimensional Approach to Company Similarity Analysis

    Get PDF
    In the prevailing digital era, heightened by an increasing incidence of cyberattacks, cybersecurity stands out as a critical concern for organizations of all sizes. While the necessity to bolster cybersecurity measures is universally acknowledged, determining an optimal strategy presents a complex challenge. This master thesis introduces a novel approach leveraging inter-company cybersecurity data sharing to assist organizations in honing their defensive measures. A tool was developed to discern the relevance of information-sharing entities by classifying companies across three dimensions: business, economic, and technical. Each dimension is defined by distinct factors, allowing for a precise comparison. An accompanying application was devised to represent the similarities among companies using the Euclidean distance and Pearson correlation. Through extensive evaluation, the Euclidean distance proved superior in the business and economic realms. However, for the technical dimension, dominated by integer values, the efficacy of both measures was comparable, suggesting their combined use for holistic insights. This master thesis offers a strategic pathway for organizations aiming to refine their cybersecurity strategies by leveraging shared data insights

    Reinforcement Learning with Intrinsic Affinity for Personalized Asset Management

    Get PDF
    The common purpose of applying reinforcement learning (RL) to asset management is the maximization of profit. The extrinsic reward function used to learn an optimal strategy typically does not take into account any other preferences or constraints. We have developed a regularization method that ensures that strategies have global intrinsic affinities, i.e., different personalities may have preferences for certain assets which may change over time. We capitalize on these intrinsic policy affinities to make our RL model inherently interpretable. We demonstrate how RL agents can be trained to orchestrate such individual policies for particular personality profiles and still achieve high returns

    Reinforcement learning with intrinsic affinity for personalized prosperity management

    Get PDF
    The purpose of applying reinforcement learning (RL) to portfolio management is commonly the maximization of profit. The extrinsic reward function used to learn an optimal strategy typically does not take into account any other preferences or constraints. We have developed a regularization method that ensures that strategies have global intrinsic affinities, i.e., different personalities may have preferences for certain asset classes which may change over time. We capitalize on these intrinsic policy affinities to make our RL model inherently interpretable. We demonstrate how RL agents can be trained to orchestrate such individual policies for particular personality profiles and still achieve high returns.publishedVersio

    Can Interpretable Reinforcement Learning Manage Prosperity Your Way?

    Get PDF
    Personalisation of products and services is fast becoming the driver of success in banking and commerce. Machine learning holds the promise of gaining a deeper understanding of and tailoring to customers’ needs and preferences. Whereas traditional solutions to financial decision problems frequently rely on model assumptions, reinforcement learning is able to exploit large amounts of data to improve customer modelling and decision-making in complex financial environments with fewer assumptions. Model explainability and interpretability present challenges from a regulatory perspective which demands transparency for acceptance; they also offer the opportunity for improved insight into and understanding of customers. Post-hoc approaches are typically used for explaining pretrained reinforcement learning models. Based on our previous modeling of customer spending behaviour, we adapt our recent reinforcement learning algorithm that intrinsically characterizes desirable behaviours and we transition to the problem of prosperity management. We train inherently interpretable reinforcement learning agents to give investment advice that is aligned with prototype financial personality traits which are combined to make a final recommendation. We observe that the trained agents’ advice adheres to their intended characteristics, they learn the value of compound growth, and, without any explicit reference, the notion of risk as well as improved policy convergence.publishedVersio

    Clustering in Recurrent Neural Networks for Micro-Segmentation using Spending Personality

    Get PDF
    Author's accepted manuscript.© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Customer segmentation has long been a productive field in banking. However, with new approaches to traditional problems come new opportunities. Fine-grained customer segments are notoriously elusive and one method of obtaining them is through feature extraction. It is possible to assign coefficients of standard personality traits to financial transaction classes aggregated over time. However, we have found that the clusters formed are not sufficiently discriminatory for micro-segmentation. In a novel approach, we extract temporal features with continuous values from the hidden states of neural networks predicting customers' spending personality from their financial transactions. We consider both temporal and non-sequential models, using long short-term memory (LSTM) and feed-forward neural networks, respectively. We found that recurrent neural networks produce micro-segments where feed-forward networks produce only coarse segments. Finally, we show that classification using these extracted features performs at least as well as bespoke models on two common metrics, namely loan default rate and customer liquidity index.acceptedVersio

    Clustering in Recurrent Neural Networks for Micro-Segmentation using Spending Personality

    Get PDF
    Author's accepted manuscript.© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Customer segmentation has long been a productive field in banking. However, with new approaches to traditional problems come new opportunities. Fine-grained customer segments are notoriously elusive and one method of obtaining them is through feature extraction. It is possible to assign coefficients of standard personality traits to financial transaction classes aggregated over time. However, we have found that the clusters formed are not sufficiently discriminatory for micro-segmentation. In a novel approach, we extract temporal features with continuous values from the hidden states of neural networks predicting customers' spending personality from their financial transactions. We consider both temporal and non-sequential models, using long short-term memory (LSTM) and feed-forward neural networks, respectively. We found that recurrent neural networks produce micro-segments where feed-forward networks produce only coarse segments. Finally, we show that classification using these extracted features performs at least as well as bespoke models on two common metrics, namely loan default rate and customer liquidity index.acceptedVersio

    Reinforcement Learning Your Way : Agent Characterization through Policy Regularization

    Get PDF
    The increased complexity of state-of-the-art reinforcement learning (RL) algorithms has resulted in an opacity that inhibits explainability and understanding. This has led to the development of several post hoc explainability methods that aim to extract information from learned policies, thus aiding explainability. These methods rely on empirical observations of the policy, and thus aim to generalize a characterization of agents’ behaviour. In this study, we have instead developed a method to imbue agents’ policies with a characteristic behaviour through regularization of their objective functions. Our method guides the agents’ behaviour during learning, which results in an intrinsic characterization; it connects the learning process with model explanation. We provide a formal argument and empirical evidence for the viability of our method. In future work, we intend to employ it to develop agents that optimize individual financial customers’ investment portfolios based on their spending personalities.publishedVersio

    Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities

    Get PDF
    open access articleThe past decade has seen significant progress in artificial intelligence (AI), which has resulted in algorithms being adopted for resolving a variety of problems. However, this success has been met by increasing model complexity and employing black-box AI models that lack transparency. In response to this need, Explainable AI (XAI) has been proposed to make AI more transparent and thus advance the adoption of AI in critical domains. Although there are several reviews of XAI topics in the literature that have identified challenges and potential research directions of XAI, these challenges and research directions are scattered. This study, hence, presents a systematic meta-survey of challenges and future research directions in XAI organized in two themes: (1) general challenges and research directions of XAI and (2) challenges and research directions of XAI based on machine learning life cycle’s phases: design, development, and deployment. We believe that our meta-survey contributes to XAI literature by providing a guide for future exploration in the XAI area

    CNN-ViT Supported Weakly-Supervised Video Segment Level Anomaly Detection

    Get PDF
    Video anomaly event detection (VAED) is one of the key technologies in computer vision for smart surveillance systems. With the advent of deep learning, contemporary advances in VAED have achieved substantial success. Recently, weakly supervised VAED (WVAED) has become a popular VAED technical route of research. WVAED methods do not depend on a supplementary self-supervised substitute task, yet they can assess anomaly scores straightway. However, the performance of WVAED methods depends on pretrained feature extractors. In this paper, we first address taking advantage of two pretrained feature extractors for CNN (e.g., C3D and I3D) and ViT (e.g., CLIP), for effectively extracting discerning representations. We then consider long-range and short-range temporal dependencies and put forward video snippets of interest by leveraging our proposed temporal self-attention network (TSAN). We design a multiple instance learning (MIL)-based generalized architecture named CNN-ViT-TSAN, by using CNN- and/or ViT-extracted features and TSAN to specify a series of models for the WVAED problem. Experimental results on publicly available popular crowd datasets demonstrated the effectiveness of our CNN-ViT-TSAN.publishedVersio
    • …
    corecore