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Abstract: The increased complexity of state-of-the-art reinforcement learning (RL) algorithms has
resulted in an opacity that inhibits explainability and understanding. This has led to the development
of several post hoc explainability methods that aim to extract information from learned policies,
thus aiding explainability. These methods rely on empirical observations of the policy, and thus
aim to generalize a characterization of agents’ behaviour. In this study, we have instead developed
a method to imbue agents’ policies with a characteristic behaviour through regularization of their
objective functions. Our method guides the agents’ behaviour during learning, which results in an
intrinsic characterization; it connects the learning process with model explanation. We provide a
formal argument and empirical evidence for the viability of our method. In future work, we intend
to employ it to develop agents that optimize individual financial customers’ investment portfolios
based on their spending personalities.

Keywords: explainable AI; multi-agent systems; deterministic policy gradients

1. Introduction

Recent advances in reinforcement learning (RL) have increased complexity which,
especially for deep RL, has brought forth challenges related to explainability [1]. The
opacity of state-of-the-art RL algorithms has led to model developers having a limited
understanding of their agents’ policies and no influence over learned strategies [2]. While
concerns surrounding explainability have been noted for AI in general, it is only more
recently that attempts have been made to explain RL systems [1,3–5]. These attempts have
resulted in a wide suite of methods that typically rely on post hoc analysis of learned poli-
cies, which give only observational assurances of agents’ behaviour. However, it is pivotal
that future development of RL methods focus on more fundamental approaches towards
inherently explainable RL [1]. We therefore propose an intrinsic method of guiding an
agent’s learning by controlling the objective function; there are two ways of manipulating
the learning objective: modifying the reward function and regularizing the actions taken
during learning. Whereas the reward function is specific to the particular problem, our
ambition is to establish a generic method. We therefore propose a method which regularizes
the objective function by minimizing the difference between the observed action distri-
bution and a desired prior action distribution; we thus bias the actions that agents learn.
While current methods for RL regularization aim to improve training performance—e.g.,
by maximizing the entropy of the action distribution [6], or by minimising the distance
to a prior sub-optimal state-action distribution [7]—our aim is the characterization of our
agents’ behaviours. We extend single-agent regularization to accommodate multi-agent
systems, which allows intrinsic characterization of individual agents. We provide a formal
argument for the rationale of our method and demonstrate its efficacy in a toy problem
where agents learn to navigate to a destination on a grid by performing, e.g., only right
turns (under the premise that right turns are considered safer than left turns [8]). There are
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several useful applications beyond this toy problem, such as asset management based on
personal goals, intelligent agents with intrinsic virtues, and niche recommender systems
based on customer preferences.

2. Background and Related Work
2.1. Agent Characterization

There have been several approaches to characterizing RL agents, with most—if not
all—employing some form of post hoc evaluation technique. Some notable examples are:

Probabilistic argumentation [9] in which a human expert creates an ‘argumentation graph’
with a set of arguments and sub-arguments; sub-arguments attack or support main
arguments which attack or support discrete actions. Sub-arguments are labelled as ‘ON’
or ‘OFF’ depending on the state observation for each time-step. Main arguments are
labelled as ‘IN’, ‘OUT’, or ‘UNDECIDED’ in the following RL setting: states are the
union of the argumentation graph and the learned policy, actions are the probabilistic
‘attitudes’ towards given arguments, and rewards are based on whether an argument
attacks or supports an action. The learned ‘attitudes’ towards certain arguments are used
to characterize agents’ behaviour.
Structural causal modelling (SCM) [10] learns causal relationships between states and
actions through ‘action influence graphs’ that trace all possible paths from a given initial
state to a set of terminal states, via all possible actions in each intermediate state. The
learned policy then identifies a causal chain as the single path in the action influence graph
that connects the initial state to the relevant terminal state. The explanation is the vector
of rewards along the causal chain. Counter-explanations are a set of comparative reward
vectors along chains originating from counter-actions in the initial state. Characterizations
are made based on causal and counterfactual reasons for agents’ choice of action.
Reward decomposition [11,12] decomposes the reward into a vector of intelligible reward
classes using expert knowledge. Agent characterization is done by evaluation of the
reward vector for each action post training.
Hierarchical reinforcement learning (HRL) [13,14] divides agents’ tasks into sub-tasks to be
learned by different agents. This simplifies the problem to be solved by each agent, mak-
ing their behaviour easier to interpret, and thereby making them easier to characterize.
Introspection (interesting elements) [15] is a statistical post hoc analysis of the policy. It
considers elements such as the frequency of visits to states, the estimated values of states
and state-action pairs, state-transition probabilities, how much of the state space is visited,
etc. Interesting statistical properties from this analysis are used to characterize the policy.

2.2. Multi-Agent Reinforcement Learning and Policy Regularization

We consider the multi-agent setting of partially observable Markov decision processes
(POMDPs) [16]: for N agents, let S be a set of states, Ai a set of actions, and Oi a set
of incomplete state observations where i ∈ [1, .., N] and S 7→ Oi. Agents select actions
according to individual policies πθi (Oi) 7→ Ai and receive rewards according to individual
reward functions ri(S ,Ai) 7→ R, where θi is the set of parameters governing agent i’s policy.
Finally, agents aim to maximize their total discounted rewards:

Ri(o, a) =
T

∑
t=0

γri(ot, at)

where T is the time horizon and γ ∈ [0, 1] is a discount factor. For single-agent systems, the
deep deterministic policy gradient algorithm (DDPG) defines the gradient of the objective
J(θ) = Es∼pµ [R(s, a)] as [17]:

∇θ J(θ) = Es∼D
[
∇θµθ(a|s)∇aQµθ (s, a)|a=µθ(s)

]
(1)
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where pµ is the state distribution, D is an experience replay buffer storing observed state
transition tuples (s, a, r, s′), and Qµθ (s, a) is a state-action value function where actions are
selected according to a policy µθ(S) 7→ A. In DDPG, the policy µ—also called the actor—
and the value function Q—also called the critic—are modelled by deep neural networks.
Equation (1) is extended to a multi-agent setting; the multi-agent deep deterministic policy
gradient algorithm (MADDPG) learns individual sets of parameters for each agent θi [18]:

∇θi J(θi) = Eo,a∼D
[
∇θi µθi (ai|oi)∇ai Q

µθi (oi, a1, ..., aN)|ai=µθi
(oi)

]
(2)

where oi ∈ Oi and the experience replay buffer D contains tuples (oi, ai, ri, o′i), i ∈ [1, .., N].
In this work, we further extend MADDPG by adding a regularization term to the

actors’ objective functions, thus encouraging them to mimic the behaviours specified by
simple predefined prior policies. There have been several approaches to regularizing RL
algorithms, mostly for the purpose of improved generalization or training performance.
In [7], the authors defined an objective function with a regularization term related to the
statistical difference between the current policy and a predefined prior:

J(θ) = Es,a∼D [R(s, a)− αDKL(πθ(s, a)‖π0(s, a))] (3)

where α is a hyperparameter scaling the relative contribution of the regularization term—
the Kullback–Leibler (KL) divergence (DKL)—and π0 is the prior policy which the agent
attempts to mimic while maximising the reward. The KL divergence is a statistical measure
of the difference between two probability distributions, formally:

DKL(P‖Q) = ∑
x∈X

P(x) log
P(x)
Q(x)

where P and Q are discrete probability distributions on the same probability space X.
The stated objective of KL regularization is increased learning performance by penalising
policies that stray too far from the prior. The KL divergence is often also called the relative
entropy, with KL-regularized RL being the generalization of entropy-regularized RL ([19]);
specifically if π0 is the uniform distribution, Equation 3 reduces to, up to a constant, the
objective function for entropy-regulated RL as described in [6]:

J(θ) = Es,a∼D [R(s, a) + αH[πθ(s, a)]] (4)

where H(π) = P(π) log(P(π)) is the statistical entropy of the policy. The goal of entropy-
regularized RL is to encourage exploration by maximising the policy’s entropy and
is used as standard in certain state-of-the-art RL algorithms, such as soft actor-critic
(SAC) [6]. Other notable regularization methods include control regularization where, dur-
ing learning, the action of the actor is weighted with an action from a sub-optimal prior:
µk =

1
1+λ µθ +

λ
1+λ µprior and temporal difference regularization, which adds a penalty for large

differences in the Q-values of successive states: J(θ, η) = Es,a,s′∼D
[
R(s, a)− ηδQ(s, a, s′)

]
,

where δQ(s, a, s′) = [R(s, a) + γQ(s′, a′)−Q(s, a))]2 [20,21].
While our algorithm is based on regularization of the objective function, it could be

argued that it shares similar goals as those of algorithms based on constrained RL, namely
the intrinsic manipulation of agents’ policies towards given objectives. One example of
constrained RL is [22], which finds a policy whose long-term measurements lie within a
set of constraints by penalising the reward function with the Euclidean distance between
the state and a given set of restrictions, e.g., an agent’s location relative to obstacles on a
map. Another example is [23], which penalises the value function with the accumulated
cost of a series of actions, thus avoiding certain state-action situations. However, where
constrained RL attempts to avoid certain conditions—usually through a penalty based on
expert knowledge of the state—regularized RL aims to promote desired behaviours, such
as choosing default actions during training or maximizing exploration by maximising



AI 2022, 3 253

action entropy. The advantage of our system is that it does not require expert knowledge of
the state-action space to construct constraints; our regularization term is independent of
the state, which allows agents to learn simple behavioural patterns, thus improving the
interpretability of their characterization.

3. Methodology

We regulate our agents based on a state-independent prior to maximize rewards
while adhering to simple, predefined rules. In a toy problem, we demonstrate that agents
learn to find a destination on a map by taking only right turns. Intuitively, we supply
the probability distribution of three actions—left, straight, and right—as a regularization
term in the objective function, meaning the agents aim to mimic this given probability
distribution while maximising rewards. Such an agent can thus be characterized as an
agent that prefers, e.g., right turns over left turns. As opposed to post hoc characterization,
ours is an intrinsic method that inserts a desirable characteristic into an agent’s behaviour
during learning.

Action Regularization

We modify the objective function in Equation (4) and replace the regularization term
H[πθ(s, a)] = P(π) log(P(π)) with the mean squared error of the expected action and a
specified prior π0:

J(θ) = Es,a∼D [R(s, a)]− λL (5)

L =
1
M

M

∑
j=0

[
Ea∼πθ

[
aj
]
− (aj|π0(a))

]2
(6)

where λ is a hyperparameter that scales the relative contribution of the regularization term
L, aj is the jth action in a vector of M actions, πθ is the current policy, and π0 is the specified
prior distribution of actions, which the agent aims to mimic while maximising the reward.
Note that π0(a) is independent of the state and (aj|π0(a)) is therefore constant across all
observations and time-steps. This is an important distinction from previous work, and
results in a prior that is simpler to construct and a characterization that can be interpreted
by non-experts; by removing the reference to the state space, we reduce the interpretation
to the action space only, i.e., in this example the agent either proceeds straight, turns left, or
turns right, independent of the locations of the agent and destination. Since this is a special
case of Equation (4), it follows from the derivation given in [6].

We continue by extending our objective function to support a multi-agent setting.
From Equation (5) and following the derivation in [18], we derive a multi-agent objective
function with i ∈ [1, N] where N is the number of agents:

J(θi) = Eoi ,ai∼D [Ri(oi, ai)]− λ
1

Mi

Mi

∑
j=0

[
Ea∼πθi

(oi ,a)(aj)− (aj|π0i (a))
]2

(7)

Further, in accordance with the MADDPG algorithm, we model actions and rewards
with actors and critics, respectively [18]:

Eai∼πθi
(oi ,ai)

[ai] = µθi (oi) (8)

Eoi ,ai∼D [Ri(oi, ai)] = Qθi (oi, µθ1(o1), . . . , µθN (oN)) (9)
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Through simple substitution of Equations (8) and (9) into Equation (7), we formulate
our multi-agent regularized objective function:

J(θi) = Qθi (oi, µθ1(o1), . . . , µθN (oN))− λLi (10)

Li =
1

Mi

Mi

∑
j=0

[
µθi (oi)j − (aj|π0i (a))

]2
(11)

Algorithm 1 optimizes the policies of multiple agents given individual regularization
constraints π0i .

Algorithm 1 Action-regularized MADDPG algorithm.
Set the number of agents N ∈ N
for i in 1, N do . For each agent

Initialize actor network µθµ,i with random parameters θµ,i

Initialize critic network QθQ,i with random parameters θQ,i

Initialize target actor network µ′θ
µ′ ,i

with parameters θµ′ ,i ← θµ,i

Initialize target critic network Q′θQ′ ,i
with parameters θQ′ ,i ← θQ,i

Set the desired prior action distribution π0i
Set the number of actions Mi ← |π0i |

end for
Initialize replay buffer D
Set regularization weight λ
for e = 1, Episodes do

Initialise random function F(e) ∼ N(0, σe) for exploration
Reset environment and get the state observation s1 7→ o[1..N]
t← 1, Done← False
while not Done do

for i in 1, N do . For each agent
Select action with exploration ai,t ← µθµ,i (oi) + F(e)

end for
Apply compounded action at
Retrieve rewards r[1..N],t and observations s′t 7→ o′[1..N],t
Store transition tuple T = (ot , at , rt , o′t) to replay buffer: D ← D ∪ T
t← t + 1
if (end of episode) then

Done← True
end if

end while
Sample a random batch from the replay buffer B ⊂ D
for i in 1, N do . For each agent

Q̂i ← rB,i + γQ′i
(
o′B,i , µ′1

(
o′B,1

)
, . . . , µ′N

(
o′B,N

))
Update critic parameters θQ,i by minimising the loss:

L(θQ,i) =
1
|B| ∑B

(
QθQ,i (oB , aB,1, . . . , aB,N)− Q̂i

)2

Update the actor parameters θµ,i by minimising the loss: . From Equation (10)

R̂i = Qi(oB,i , µ1(oB,1), . . . , µN(oB,N))

L(θµ,i) = −R̂i + λ
1

Mi

Mi

∑
j=1

[
µi(oB,i)j −

(
aj |π0i

)]2

Update target network parameters:

θµ′ ,i ← τθµ,i + (1− τ)θµ′ ,i

θQ′ ,i ← τθQ,i + (1− τ)θQ′ ,i

end for
end for

4. Experiments
4.1. Empirical Setup

We created a toy problem in which one or more agents navigate a 6× 6 grid through a
set of three actions: A1 = turn left,A2 = go straight, andA3 = turn right. Every new episode
randomly placed a set of destinations in the grid Di, i ∈ [1, N]—one for each of N ≥ 1
agents—with initial agent locations Li,0 = (3, 0). Rewards were the agents’ Euclidean
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distances from their destinations Ri,t = ‖Di − Li,t‖2 where Li,t is the location of agent i
at time-step t. Finally, agents’ observations were the two-dimensional distances to their
destinations: Oi,t = Di − Li,t. An episode was completed when either both agents had
reached their destinations or a maximum of 50 time steps had passed.

We ran two sets of experiments, one for a single-agent setting and one for a dual-agent
setting. We sized all networks in these two settings with two fully connected feed-forward
layers; the single agent networks had 200 nodes in each layer, while the dual-agent networks
had 700 nodes in each layer. Actor networks had a softmax activation layer, while the
critic networks remained unactivated. Our training runs consisted of 3000 iterations and
we tuned the hyperparameters using a simple one-at-a-time parameter sweep. We used
training batches of 256 time-steps and sized the reply buffers to hold 2048 time-steps. In each
iteration, we collected 256 time steps and ran two training epochs. We tuned the learning
rates to 0.04 for the actors and 0.06 for the critics, the target network update parameters τ
to 0.06, and the discount factors γ to 0.95. We specified the regularization coefficient λ = 2,
the regularization prior for the single-agent setting as π0 = [P(A1), P(A2), P(A3)] =
[0.0, 0.6, 0.4], and the regularization priors for the dual-agent setting as π0,1 = [0.0, 0.6, 0.4]
and π0,2 = [0.4, 0.6, 0.0]. This meant that the single agent was regularized to not take any
left turns, while slightly favouring going straight above turning right. For the dual agents,
agent 1 was to avoid left turns while agent 2 was to instead avoid right turns; we did this to
demonstrate the characterization of the agents as preferring either left or right turns while
navigating to their destinations. We conducted three experiments to explore the effects of
the regularization prior, using the single-agent system for brevity, with the regularization
priors π0 ∈ {[0.4, 0.2, 0.4], [0.33, 0.33, 0.33], [0.1, 0.5, 0.4]}.

4.2. Results

In the single agent setting of our toy problem, we used our algorithm to encourage an
agent to prefer right turns over left turns; we used a regularization prior π0 = [0.0, 0.6, 0.4]
to regulate the probability of left actions to 0.0, straight actions to 0.6, and right actions to 0.4.
Figure 1 shows three different trajectories that demonstrate such an agent’s behaviour for
destinations which lie either to the left, straight ahead, or to the right of the agent’s starting
location. As expected, the agent never turned left and always took the shortest route to its
destination given its constraints.
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Figure 1. Three trajectories of a single agent in the navigation problem. The starting locations are
consistently (3,0), and the destinations are marked by red circles. During learning, the agent received
a regularization prior π0 = [0.0, 0.6, 0.4], where the values in π0 correspond to the probabilities of the
actions turn left, go straight, and turn right, respectively. While the agent in (a) makes a series of right
turns to reach its destination on the left, the agent in (b) needs not turn, and the agent in (c) follows
the shortest path involving a single right turn.

Figure 2 shows three additional experiments which illustrate an agent’s behaviour
given different regularization priors. In Figure 2a, we used the prior π0 = [0.4, 0.2, 0.4],
which biased the agent towards taking turns rather than going straight. This agent consis-
tently followed a zig-zag approach to the target, using the same number of steps compared
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to a direct path with a single turn. This is an interesting observation, as an unregulated
agent would typically take a direct path, as shown in Figure 2b. This agent was regulated
with a uniform prior π0 = [0.33, 0.33, 0.33], which resulted in a similar strategy as that of
an unregulated agent, but with the added benefit of increased exploration as discussed
in [6]—entropy regularization uses the uniform distribution for π0. In Figure 2c, we used
the prior π0 = [0.1, 0.5, 0.4] which assigns a low probability for taking left turns. In this
experiment we specifically chose a destination to the immediate left of the starting location;
other destinations allowed the agent to take the preferred right turns, whereas an immedi-
ate left turn to this shown destination proves that the agent does take this action in special
cases. These behaviours are also observed in the multi-agent setting which, for brevity, we
do not show here.
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Figure 2. Three trajectories of agents trained with various regularization priors. In (a), the agent
is biased towards taking turns and follows a zig-zag trajectory towards the destination (π0 =

[0.4, 0.2, 0.4]). In (b), the agent’s regularization prior is uniform—which equally favours all actions—
and it follows the shortest path to the destination (π0 = [0.33, 0.33, 0.33]). In (c), the agent is allowed
to take left turns with a low probability (π0 = [0.1, 0.5, 0.4]); we specifically chose the shown
destination to encourage the agent to make a left turn.

Figure 3 shows the same grid navigation problem, but this time for a multi-agent set-
ting. Here, we used two agents with different regularization terms to constrain their
actions to (1) right turns only and (2) left turns only; the first agent’s regularization
prior π0,1 = [0.0, 0.6, 0.4] specified a probability of 0.0 for the left action, 0.6 for the
straight action, and 0.4 for the right action, while the second agent’s regularization prior
π0,2 = [0.4, 0.6, 0.0] specified a probability of 0.4 for the left action, 0.6 for the straight
action, and 0.0 for the right action. Clearly, the two agents have learned different strategies
in the navigation problem. In Figure 3, it is clear that the two agents consistently took the
shortest path to their respective destinations while adhering to their individual constraints.
We therefore characterize them as agents that preferred to take right and left turns, respec-
tively. Crucially, this is an intrinsic property of the agents imposed by the regularization of
the objective function. This separates our method of intrinsic characterization from post
hoc characterization techniques.

Finally, Figure 4 shows typical curves of training and testing returns for both the
single-agent and multi-agent systems across 3000 training iterations. The agents clearly
demonstrate a good learning response with steadily increasing returns both in training and
testing and, while training performance is naturally slightly dependant on random initial
conditions, there is no significant difference in convergence time between the single-agent
and multi-agent systems.
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Figure 3. Four sets of trajectories for a dual-agent environment in the navigation problem. The
first agent—labelled ’right turns’—received a regularization prior π0,1 = [0.0, 0.6, 0.4] while the
second agent—labelled ’left turns’—received a regularization prior π0,2 = [0.4, 0.6, 0.0], where the
values in π0,i correspond to the probabilities of the actions turn left, go straight, and turn right.
In (a) both agents’ destinations are on the left, but only the agent regularized to prefer left turns
actually turns left while the other agent completes a series of right turns to reach its destination. In
(b) both agents’ destinations are located such that they have to perform a series of turns according to
their regularization priors. In (c) both agents’ destinations are located such that they perform their
preferential turn—either to the left, or to the right—according to their regularization priors. In (d) one
agent’s destination is straight ahead and it needs to not turn; the regularization prior clearly allows
for such a strategy.
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(a) Single-agent training performance

0 500 1000 1500 2000 2500 3000
Iterations

−200

−150

−100

−50

0

Sc
or
e

train
test

(b) Multi-agent training performance

Figure 4. Training and testing returns for two typical training runs: the single-agent system in (a) and
the multi-agent system in (b). In both cases, the learning processes clearly followed steady increases
in returns and convergence happened roughly in the same number of iterations.

5. Conclusions and Direction for Future Work

Our objective was the intrinsic characterization of RL agents. To this end, we investi-
gated and briefly summarized the relevant state-of-the-art in explainable RL and found
that these methods have typically been relying on post-hoc evaluations of a learned policy.
Policy regularization is a method that modifies a policy; however, it has typically been
employed to enhance training performance which does not necessarily aid in policy charac-
terization. We therefore adapted entropy regularization from maximizing the entropy in
the policy to minimizing the mean squared difference between the expected action and a
given prior. This encourages the agent to mimic a predefined behaviour while maximiz-
ing its reward during learning. Finally, we extended MADDPG with our regularization
term. We provided a formal argument for the validity of our algorithm and empirically
demonstrated its functioning in a toy problem. In this problem, we characterized two
agents to follow different approaches when navigating to a destination in a grid; while one
agent performed only right turns, the other performed only left turns. We conclude that
our fundamentally sound algorithm was able to imbue our agents’ policies with specific
characteristic behaviours. In future work, we intend to use this algorithm to develop a set of
financial advisors that will optimize individual customers’ investment portfolios according
to their individual spending personalities [24]. While maximising portfolio values, these
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agents may prefer, e.g., property investments over crypto currencies, which are analogous
to right turns and left turns in our toy problem.
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