5 research outputs found

    A digital microfluidic system for serological immunoassays in remote settings

    Get PDF
    Serosurveys are useful for assessing population susceptibility to vaccine-preventable disease outbreaks. Although at-risk populations in remote areas could benefit from this type of information, they face several logistical barriers to implementation, such as lack of access to centralized laboratories, cold storage, and transport of samples. We describe a potential solution: a compact and portable, field-deployable, point-of-care system relying on digital microfluidics that can rapidly test a small volume of capillary blood for disease-specific antibodies. This system uses inexpensive, inkjet-printed digital microfluidic cartridges together with an integrated instrument to perform enzyme-linked immunosorbent assays (ELISAs). We performed a field validation of the system’s analytical performance at Kakuma refugee camp, a remote setting in northwestern Kenya, where we tested children aged 9 to 59 months and caregivers for measles and rubella immunoglobulin G (IgG). The IgG assays were determined to have sensitivities of 86% [95% confidence interval (CI), 79 to 91% (measles)] and 81% [95% CI, 73 to 88% (rubella)] and specificities of 80% [95% CI, 49 to 94% (measles)] and 91% [95% CI, 76 to 97% (rubella)] (measles, n = 140; rubella, n = 135) compared with reference tests (measles IgG and rubella IgG ELISAs from Siemens Enzygnost) conducted in a centralized laboratory. These results demonstrate a potential role for this point-of-care system in global serological surveillance, particularly in remote areas with limited access to centralized laboratories

    Direct Interface between Digital Microfluidics and High Performance Liquid Chromatography–Mass Spectrometry

    No full text
    We introduce an automated method to facilitate in-line coupling of digital microfluidics (DMF) with HPLC-MS, using a custom, 3D-printed manifold and a custom plugin to the popular open-source control system, DropBot. The method was designed to interface directly with commercial autosamplers (with no prior modification), suggesting that it will be widely accessible for end-users. The system was demonstrated to be compatible with samples dissolved in aqueous buffers and neat methanol and was validated by application to a common steroid-labeling derivatization reaction. We propose that the methods described here will be useful for a wide range of applications, combining the automated sample processing power of DMF with the resolving and analytical capacity of HPLC-MS

    Direct Interface between Digital Microfluidics and High Performance Liquid Chromatography–Mass Spectrometry

    No full text
    We introduce an automated method to facilitate in-line coupling of digital microfluidics (DMF) with HPLC-MS, using a custom, 3D-printed manifold and a custom plugin to the popular open-source control system, DropBot. The method was designed to interface directly with commercial autosamplers (with no prior modification), suggesting that it will be widely accessible for end-users. The system was demonstrated to be compatible with samples dissolved in aqueous buffers and neat methanol and was validated by application to a common steroid-labeling derivatization reaction. We propose that the methods described here will be useful for a wide range of applications, combining the automated sample processing power of DMF with the resolving and analytical capacity of HPLC-MS

    Use of a rapid digital microfluidics-powered immunoassay for assessing measles and rubella infection and immunity in outbreak settings in the Democratic Republic of the Congo.

    No full text
    The Democratic Republic of the Congo (DRC) has a high measles incidence despite elimination efforts and has yet to introduce rubella vaccine. We evaluated the performance of a prototype rapid digital microfluidics powered (DMF) enzyme-linked immunoassay (ELISA) assessing measles and rubella infection, by testing for immunoglobulin M (IgM), and immunity from natural infection or vaccine, by testing immunoglobulin G (IgG), in outbreak settings. Field evaluations were conducted during September 2017, in Kinshasa province, DRC. Blood specimens were collected during an outbreak investigation of suspected measles cases and tested for measles and rubella IgM and IgG using the DMF-ELISA in the field. Simultaneously, a household serosurvey for measles and rubella IgG was conducted in a recently confirmed measles outbreak area. DMF-ELISA results were compared with reference ELISA results tested at DRC's National Public Health Laboratory and the US Centers for Disease Control and Prevention. Of 157 suspected measles cases, rubella IgM was detected in 54% while measles IgM was detected in 13%. Measles IgG-positive cases were higher among vaccinated persons (87%) than unvaccinated persons (72%). In the recent measles outbreak area, measles IgG seroprevalence was 93% overall, while rubella seroprevalence was lower for children (77%) than women (98%). Compared with reference ELISA, DMF-ELISA sensitivity and specificity were 82% and 78% for measles IgG; 88% and 89% for measles IgM; 85% and 85% for rubella IgG; and 81% and 83% for rubella IgM, respectively. Rubella infection was detected in more than half of persons meeting the suspected measles case definition during a presumed measles outbreak, suggesting substantial unrecognized rubella incidence, and highlighting the need for rubella vaccine introduction into the national schedule. The performance of the DMF-ELISA suggested that this technology can be used to develop rapid diagnostic tests for measles and rubella
    corecore