4 research outputs found

    Discharges of dust from NORM facilities: Key parameters to assess effective doses for public exposure

    No full text
    In transposing Directive 2013/59/Euratom (European Basic Safety Standards or EU BSS) into national law, it was necessary to identify industrial sectors which involve naturally occurring radioactive materials (NORM) which may lead to public exposure that cannot be disregarded from a radiation protection point of view. A research project was implemented that resulted in a comprehensive survey of all potentially relevant industrial sectors operating in Germany. Major efforts were made to determine source terms of airborne discharges, atmospheric dispersion models, and dose calculations.The study arrived at the conclusion that the discharge and the settlement of dust in agricultural and horticultural areas is the most relevant dispersion and exposure pathway, while discharges of radon are of minor importance.The original study used a number of rather complex models that may distract from the fact that very few key parameters and assumptions determine the effective dose of members of the public. This paper revisits the study and identifies those parameters and assumptions and provides a simplified, generic, yet sufficiently reliable and robust assessment methodology to determine the radiological relevance of dust discharges from NORM industries under the typical geographical and meteorological conditions of Germany.This paper provides examples of dose estimates for members of the public for selected industries operating in Germany. Due to its simplicity and robustness, the methodology can also be used to assess effective doses resulting from discharges in other industries in Germany, and it can be adapted to conditions in other countries in a straightforward way. Keywords: NORM, Dust discharge, Public exposure, High temperature processes, Atmospheric dispersion mode

    The Dalton quantum chemistry program system

    No full text
    Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms
    corecore