21 research outputs found

    Optimized Nail for Penetration Test on Lithium-Ion Cells and Its Utilization for the Validation of a Multilayer Electro-Thermal Model

    Get PDF
    Nail penetration is one of the most critical scenarios for a lithium-ion cell: it involves the superposition of electrical, thermal and mechanical abusive loads. When an electrically conductive nail is introduced into the active layers of a lithium-ion cell, an electric short circuit takes place between the conductive components (electrodes and current collectors). Hence, for this load case, electro-thermal modeling must be performed considering each and every layer of the cell in order to predict the electric quantities and the cell temperature (with numerical models). When standard conic nails are used, as is typical for this class of tests, the electrical contact between conductive components and the nail itself suffers of poor reproducibility mainly due to the separator that interposes between the electrically conductive components. This phenomenon makes it difficult to validate electro-thermal models, since the electrical contact between nail and lithium-ion cell parts cannot be safely determined. In this work, an alternative nail with an optimized ratio between the external surface and volume is presented to overcome this issue. To demonstrate the effectiveness of the designed nail, five tests (with the same conditions) were conducted on five commercial lithium-ion pouch cells, monitoring the tabs voltage and surface temperature. In all tests, thermal runaway was reached within 30 s and the tabs voltage showed comparable behavior, indicating that the short circuit values for all five repetitions were similar. The investigation included the implementation of a detailed layers model to demonstrate how the validation of such model would be possible with the novel data

    Application of PGD separation of space to create a reduced-order model of a lithium-ion cell structure

    Get PDF
    Lithium-ion cells can be considered a laminate of thin plies comprising the anode, separator, and cathode. Lithium-ion cells are vulnerable toward out-of-plane loading. When simulating such structures under out-of-plane mechanical loads, subordinate approaches such as shells or plates are sub-optimal because they are blind toward out-of-plane strains and stresses. On the other hand, the use of solid elements leads to limitations in terms of computational efficiency independent of the time integration method. In this paper, the bottlenecks of both (implicit and explicit) methods are discussed, and an alternative approach is shown. Proper generalized decomposition (PGD) is used for this purpose. This computational method makes it possible to divide the problem into the characteristic in-plane and out-of-plane behaviors. The separation of space achieved with this method is demonstrated on a static linearized problem of a lithium-ion cell structure. The results are compared with conventional solution approaches. Moreover, an in-plane/out-of-plane separated representation is also built using proper orthogonal decomposition (POD). This simply serves to compare the in-plane and out-of-plane behaviors estimated by the PGD and does not allow computational advantages relative to conventional techniques. Finally, the time savings and the resulting deviations are discussed

    Implementing Reversible Swelling into the Numerical Model of a Lithium-Ion Pouch Cell for Short Circuit Prediction

    No full text
    Mechanical simulation models have become crucial for understanding Li-ion battery failure and degradation mechanisms. However, existing safety assessment models lack the implementation of SOC-dependent thickness variations referred to as reversible swelling. Reversible swelling affects the applied preload force on a constrained pouch cell, potentially impacting its safety. To investigate this, a finite element RVE model was developed in LS-Dyna. Two swelling models, simplified homogenous expansion (HE) and locally resolved expansion (LE), were implemented along with a reference basis model (BM) without expansion. Six different stress- or strain-based short circuit criteria were calibrated with abuse test simulations at different SOCs and preload forces. Short circuit prognosis improved on average by 0.8% and 0.7% for the LE and HE model compared to the BM, with minimum principal stress being the most suitable criterion. The LE model exhibited a softer mechanical response than the HE model or BM, accounting for the pouch cell surface unevenness at small indentations. This study demonstrated the feasibility and usefulness of implementing an expansion model in a commercial FE solver for improved short circuit predictions. An expansion model is crucial for simulating aged battery cells with significant geometry changes strongly affecting the preload force of a constrained battery cell

    UFO: Ultraflat Overrunable Robot for Experimental ADAS Testing

    No full text
    This industrial project introduces an ultraflat automated robot that can be used for testing driver assistance systems as well as automated driving scenarios. Because of its very stable and flat structure, it can be overrun by test vehicles without any damage. Therefore, it is possible to use this robot for both pre- and postcrash testing scenarios as well as for the evaluation of active safety systems (e.g., automatic brake) and autonomous driving

    On the Development of a Release Mechanism for a Split Hopkinson Tension and Compression Bar

    No full text
    Split Hopkinson bars are used for the dynamic mechanical characterisation of materials under high strain rates. Many of these test benches are designed in such a way that they can either be used for compressive or tensile loading. The goal of the present work is to develop a release mechanism for an elastically pre-stressed Split Hopkinson bar that can be universally used for tensile or compressive loading. The paper describes the design and dimensioning of the release mechanism, including the brittle failing wear parts from ultra-high strength steel. Additionally, a numerical study on the effect of the time-to-full-release on the pulse-shape and pulse-rising time was conducted. The results of the analytical dimensioning approaches for the release mechanism, including the wear parts, were validated against experimental tests. It can be demonstrated that the designed release concept leads to sufficiently short and reproducible pulse rising times of roughly 0.11 ms to 0.21 ms, depending on the pre-loading level for both the tension and compression wave. According to literature, the usual pulse rising times can range from 0.01 ms to 0.35 ms, which leads to the conclusion that a good average pulse rising time was achieved with the present release system

    Safety Assessment of High Dynamic Pre-Loaded Lithium Ion Pouch Cells

    No full text
    The knowledge of the influence of high dynamic loads on the electrical and mechanical behavior of lithium-ion cells is of high importance to ensure a safe use of batteries over the lifetime in electric vehicles. For the first time, the behavior of six commercial Li-Ion pouch cells after a constrained short-time acceleration (300 g over 6 ms) with a resulting cell surface pressure of 9.37 MPa was investigated. At this load, two out of six cells suffered from an internal short circuit, showing several damaged separator layers across the thickness in the area of the cell tabs. For the cells that remained intact, a range of measurement techniques (e.g., inner resistance measurement, electrochemical impedance spectroscopy (EIS), or thermal imaging) was used to reveal changes in the electrical property resulting from the load. The cells without short circuit show an increase of internal resistance (average of 0.89%) after the dynamic pre-load. The electric circuit model based on the EIS measurement indicates a decrease of the resistance R1 up to 30.8%. Additionally, mechanical properties of the cells in an abuse test subsequent to the dynamic pre-load were significantly influenced. The pre-loaded cell could sustain an 18% higher intrusion depth before electrical failure occurred as compared to a fresh cell in an indentation test. The results of this study revealed that a high acceleration pulse under realistic boundary conditions can lead to critical changes in a battery cell’s properties and needs to be taken into account for future safety assessments

    Safety Assessment of High Dynamic Pre-Loaded Lithium Ion Pouch Cells

    No full text
    The knowledge of the influence of high dynamic loads on the electrical and mechanical behavior of lithium-ion cells is of high importance to ensure a safe use of batteries over the lifetime in electric vehicles. For the first time, the behavior of six commercial Li-Ion pouch cells after a constrained short-time acceleration (300 g over 6 ms) with a resulting cell surface pressure of 9.37 MPa was investigated. At this load, two out of six cells suffered from an internal short circuit, showing several damaged separator layers across the thickness in the area of the cell tabs. For the cells that remained intact, a range of measurement techniques (e.g., inner resistance measurement, electrochemical impedance spectroscopy (EIS), or thermal imaging) was used to reveal changes in the electrical property resulting from the load. The cells without short circuit show an increase of internal resistance (average of 0.89%) after the dynamic pre-load. The electric circuit model based on the EIS measurement indicates a decrease of the resistance R1 up to 30.8%. Additionally, mechanical properties of the cells in an abuse test subsequent to the dynamic pre-load were significantly influenced. The pre-loaded cell could sustain an 18% higher intrusion depth before electrical failure occurred as compared to a fresh cell in an indentation test. The results of this study revealed that a high acceleration pulse under realistic boundary conditions can lead to critical changes in a battery cell’s properties and needs to be taken into account for future safety assessments
    corecore