15 research outputs found

    Hepatocellular adenomas: is there additional value in using Gd-EOB-enhanced MRI for subtype differentiation?

    Get PDF
    Purpose: To differentiate subtypes of hepatocellular adenoma (HCA) based on enhancement characteristics in gadoxetic acid (Gd-EOB) magnetic resonance imaging (MRI). Materials and methods: Forty-eight patients with 79 histopathologically proven HCAs who underwent Gd-EOB-enhanced MRI were enrolled (standard of reference: surgical resection). Two blinded radiologists performed quantitative measurements (lesion-to-liver enhancement) and evaluated qualitative imaging features. Inter-reader variability was tested. Advanced texture analysis was used to evaluate lesion heterogeneity three-dimensionally. Results: Overall, there were 19 (24%) hepatocyte nuclear factor (HNF)-1a-mutated (HHCAs), 37 (47%) inflammatory (IHCAs), 5 (6.5%) b-catenin-activated (bHCA), and 18 (22.5%) unclassified (UHCAs) adenomas. In the hepatobiliary phase (HBP), 49.5% (39/79) of all adenomas were rated as hypointense and 50.5% (40/79) as significantly enhancing (defined as > 25% intralesional GD-EOB uptake). 82.5% (33/40) of significantly enhancing adenomas were IHCAs, while only 4% (1/40) were in the HHCA subgroup (p < 0.001). When Gd-EOB uptake behavior was considered in conjunction with established MRI features (binary regression model), the area under the curve (AUC) increased from 0.785 to 0.953 for differentiation of IHCA (atoll sign + hyperintensity), from 0.859 to 0.903 for bHCA (scar + hyperintensity), and from 0.899 to 0.957 for HHCA (steatosis + hypointensity). Three-dimensional region of interest (3D ROI) analysis showed significantly increased voxel heterogeneity for IHCAs (p = 0.038). Conclusion: Gd-EOB MRI is of added value for subtype differentiation of HCAs and reliably identifies the typical heterogeneous HBP uptake of IHCAs. Diagnostic accuracy can be improved significantly by the combined analysis of established morphologic MR appearances and intralesional Gd-EOB uptake. Key points: •Gd-EOB-enhanced MRI is of added value for subtype differentiation of HCA. •IHCA and HHCA can be identified reliably based on their typical Gd-EOB uptake patterns, and accuracy increases significantly when additionally taking established MR appearances into account. •The small numbers of bHCAs and UHCAs remain the source of diagnostic uncertainty

    Octreotide treatment of patients with hepatocellular carcinoma - a retrospective single centre controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of treatment with octreotide of patients with hepatocellular carcinoma (HCC) gave conflicting results. We analyzed retrospectively the survival of our patients treated with octreotide monotherapy and compared it to stage-matched patients who received either TACE, multimodal therapy or palliative care.</p> <p>Methods</p> <p>95 patients seen at the department of Gastroenterology and Hepatology, Medical University of Vienna with HCC in BCLC stage A or B, who received either TACE, multimodal therapy, long-acting octreotide or palliative care were reviewed for this retrospective study.</p> <p>Results</p> <p>Survival rates of patients with BCLC stage B and any "active" treatment (long-acting octreotide, TACE or multimodal therapy) were significantly higher (22.4, 22.0, 35.5 months) compared to patients who received palliative care only (2.9 months). Survival rates of patients with BCLC stage A and "active" treatment (31.4, 37.3, 40.2 months) compared to patients who received only palliative care (15.1 months) did not show statistically significant differences. Octreotide monotherapy showed a similar outcome compared to patients who received TACE or multimodal therapy.</p> <p>Conclusion</p> <p>Survival under octreotide treatment was not different compared to TACE or multimodal therapy and might be a therapeutic option for patients with HCC.</p

    DNA methylation-based classification of sinonasal tumors

    Get PDF
    The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent potentially previously misclassified adenoid cystic carcinomas. Our findings can aid in improving the diagnostic classification of sinonasal tumors and could help to change the current perception of SNUCs

    Energetic Characterization of Faujasite Zeolites Using a Sensor Gas Calorimeter

    No full text
    In addition to the adsorption mechanism, the heat released during exothermic adsorption influences the chemical reactions that follow during heterogeneous catalysis. Both steps depend on the structure and surface chemistry of the catalyst. An example of a typical catalyst is the faujasite zeolite. For faujasite zeolites, the influence of the Si/Al ratio and the number of Na+ and Ca2+ cations on the heat of adsorption was therefore investigated in a systematic study. A comparison between a NaX (Sodium type X faujasite) and a NaY (Sodium type Y faujasite) zeolite reveals that a higher Si/Al ratio and therefore a smaller number of the cations in faujasite zeolites leads to lower loadings and heats. The exchange of Na+ cations for Ca2+ cations also has an influence on the adsorption process. Loadings and heats first decrease slightly at a low degree of exchange and increase significantly with higher calcium contents. If stronger interactions are required for heterogeneous catalysis, then the CaNaX zeolites must have a degree of exchange above 53%. The energetic contributions show that the highest-quality adsorption sites III and III’ make a contribution to the load-dependent heat of adsorption, which is about 1.4 times (site III) and about 1.8 times (site III’) larger than that of adsorption site II

    Energetic Characterization of Faujasite Zeolites Using a Sensor Gas Calorimeter

    No full text
    In addition to the adsorption mechanism, the heat released during exothermic adsorption influences the chemical reactions that follow during heterogeneous catalysis. Both steps depend on the structure and surface chemistry of the catalyst. An example of a typical catalyst is the faujasite zeolite. For faujasite zeolites, the influence of the Si/Al ratio and the number of Na+ and Ca2+ cations on the heat of adsorption was therefore investigated in a systematic study. A comparison between a NaX (Sodium type X faujasite) and a NaY (Sodium type Y faujasite) zeolite reveals that a higher Si/Al ratio and therefore a smaller number of the cations in faujasite zeolites leads to lower loadings and heats. The exchange of Na+ cations for Ca2+ cations also has an influence on the adsorption process. Loadings and heats first decrease slightly at a low degree of exchange and increase significantly with higher calcium contents. If stronger interactions are required for heterogeneous catalysis, then the CaNaX zeolites must have a degree of exchange above 53%. The energetic contributions show that the highest-quality adsorption sites III and III&rsquo; make a contribution to the load-dependent heat of adsorption, which is about 1.4 times (site III) and about 1.8 times (site III&rsquo;) larger than that of adsorption site II

    Investigation of Mechanical, Chemical and Adsorptive Properties of Novel Silicon-Based Adsorbents with Activated Carbon Structure

    No full text
    In this article, for the first time the chemical and mechanical properties of novel adsorbents based on the coating of activated carbons with silicon carbide are reported. The adsorbents are prepared by chemical vapor infiltration (CVI) of activated carbons with tetramethylsilane (TMS) as a precursor. A comparison of two different modified types of activated carbon, C40/4 Extra and A35/4 Extra, each infiltrated with 25%-mass at infiltration temperatures of 973.15 and 1098.15 K, respectively, is presented. Adsorption properties were characterized by measuring nitrogen isotherms and volatile organic compounds (VOC) isotherms in gas phase and excess isotherms in liquid phase. In addition, the physico-chemical properties including the bulk density, ash content, particle hardness, abrasion, conductivity, water-soluble components, and pH value were determined. Furthermore, the first experiments in a fluidized bed adsorber are presented. The results show that the adsorption properties of the modified adsorbents are mainly maintained. The particle hardness and the abrasion resistance increases with increasing infiltration temperature, which leads to an overall increasing of mechanical stability. A modification of the chemical stability as a result of the infiltration experiments is not observed

    Impact of Na+ and Ca2+ Cations on the Adsorption of H2S on Binder-Free LTA Zeolites

    No full text
    Hydrogen sulfide is removed from natural gas via adsorption on zeolites. The process operates very effectively, but there is still potential for improvement. Therefore, in this article, the adsorption of hydrogen sulfide was investigated on eight LTA zeolites with different cation compositions. Starting with the zeolite NaA (4 A), which contains only Na+ cations, the Ca2+ cation content was gradually increased by ion exchange. Equilibrium isotherms from cumulative breakthrough curve experiments in a fixed-bed adsorber at 25°C and 85°C at 1.3 bar (abs.) were determined in the trace range up to a concentration of 2000 ppmmol. From a comparison of the isotherms of the different materials, a mechanistic proposal for the adsorption is developed, taking into account the specific positions of the cations in the zeolite lattice when the degree of exchange is increased. The shape of the isotherms indicates two energetically different types of adsorption sites. It is assumed that two mechanisms are superimposed: a chemisorptive mechanism with dissociation of hydrogen sulfide and covalent bonding of the proton and the hydrogen sulfide ion to the zeolite lattice and a physisorptive mechanism by electrostatic interaction with the cations in the lattice. As the degree of exchange increases, the proportion of chemisorption sites seems to decrease. Above an exchange degree of 50%, only evidence of physisorption can be found. It is shown that this finding points to the involvement of weakly bound sodium cations at cation position III in the chemisorption of hydrogen sulfide

    CT and MRI Findings of Autoimmune Polymorph Bifocal Pancreatitis Mimicking Pancreatic Adenocarcinoma

    No full text
    Autoimmune pancreatitis is a rare type of chronic pancreatitis. It is supposed to be a pancreatic manifestation of an immune-complex modulated systemic disorder. In contrast, pancreatic adenocarcinoma is the most frequent malignant neoplasm of the pancreas. Within the rare type of focal autoimmune pancreatitis, only few presentations with multifocal pancreatic lesions have been described. Herein we report a case of a 58-year-old patient with autoimmune pancreatitis presenting with bifocal manifestations of the pancreatic head and tail, mimicking pancreatic adenocarcinoma clinically, on computed tomography and magnetic resonance imaging. Typical imaging findings of autoimmune pancreatitis are compared with typical findings in pancreatic carcinoma. The diagnostic dilemma of differentiating between both entities is discussed. A review of the present literature regarding multifocal presence of autoimmune pancreatitis is performed

    Implications of Imaging Criteria for the Management and Treatment of Intraductal Papillary Mucinous Neoplasms - Benign versus Malignant Findings

    No full text
    OBJECTIVES Evaluation of computed tomography (CT) and magnetic resonance imaging (MRI) for differentiation of pancreatic intraductal papillary mucinous neoplasm (IPMN) subtypes based on objective imaging criteria. METHODS Fifty-eight patients with 60 histologically confirmed IPMNs were included in this retrospective study. Eighty-three imaging studies (CT,n = 42; MRI,n = 41) were analysed by three independent blinded observers (O1-O3), using established imaging criteria to assess likelihood of malignancy (-5, very likely benign; 5, very likely malignant) and histological subtype (i.e., low-grade (LGD), moderate-grade (MGD), high-grade dysplasia (HGD), early invasive carcinoma (IPMC), solid carcinoma (CA) arising from IPMN). RESULTS Forty-one benign (LGD IPMN,n = 20; MGD IPMN,n = 21) and 19 malignant (HGD IPMN,n = 3; IPMC,n = 6; solid CA,n = 10) IPMNs located in the main duct (n = 6), branch duct (n = 37), or both (n = 17) were evaluated. Overall accuracy of differentiation between benign and malignant IPMNs was 86/92 % (CT/MRI). Exclusion of overtly malignant cases (solid CA) resulted in overall accuracy of 83/90 % (CT/MRI). The presence of mural nodules and ductal lesion size ≥30 mm were significant indicators of malignancy (p = 0.02 and p < 0.001, respectively). CONCLUSIONS Invasive IPMN can be identified with high confidence and sensitivity using CT and MRI. The diagnostic problem that remains is the accurate radiological differentiation of premalignant and non-invasive subtypes. KEY POINTS • CT and MRI can differentiate benign from malignant forms of IPMN. • Identifying (pre)malignant histological IPMN subtypes by CT and MRI is difficult. • Overall, diagnostic performance with MRI was slightly (not significantly) superior to CT
    corecore