145 research outputs found
Light diffraction by field-induced non-periodic magnetic domain structures in FeCl2
The magnetic-field-induced mixed phase of the meta magnet FeCl2 gives rise to reduced transmittivity of circularly polarized light. Within the framework of the diffraction theory of thin random magnetic phase gratings and the assumption of field-dependent refractive indices of the antiferromagnetic domains the field dependence of the transmission is perfectly modeled
Exchange Bias in a generalized Meiklejohn-Bean approach
A generalized Meiklejohn–Bean model is considered in order to derive an analytic expression for the dependence of the previous exchange bias term field on the layer thickness involved in ferromagnetic/antiferromagnetic heterosystems, on the orientation of the applied magnetic field with respect to the magnetic easy axes and on the quenched magnetization MAF of the antiferromagnetic pinning layer. While MAF is a well-known feature of field-cooled dilute antiferromagnets, it seems to occur quite generally also in pure AF pinning substrates. The new analytic expressions are successfully compared with recent experimental results and Monte Carlo investigations
Extrinsic control of the exchange bias
A new control mechanism for the exchange bias effect in magnetic heterostructures is proposed. It takes advantage of the magnetoelectric effect which takes place in the antiferromagnetic pinning layer. In contrast with the pioneering AC measurements of the magnetoelectric effect, we investigate the magnetic response of the prototypical magnetoelectric compound Cr2O3 on static electric fields. The linear dependence of the magnetic moment on the applied axial electric field and the temperature dependence of the corresponding slopes αshort parallel are measured by DC SQUID magnetometry. The contribution of the field-induced surface magnetization and its impact on the exchange bias effect is estimated
Electric Control of Exchange Bias Training
Voltage-controlled exchange bias training and tunability are introduced. Isothermal voltage pulses are used to reverse the antiferromagnetic order parameter of magnetoelectric Cr2O3, and thus continuously tune the exchange bias of an adjacent CoPd film. Voltage-controlled exchange bias training is initialized by tuning the antiferromagnetic interface into a nonequilibrium state incommensurate with the underlying bulk. Interpretation of these hitherto unreported effects contributes to new understanding in electrically controlled magnetis
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017 cm-3 . The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor
Boundary magnetization properties of epitaxial Cr2−xAlxO3 thin films
The magnetoelectric antiferromagnet α-Cr2O3 (chromia) is known to possess a roughness insensitive net equilibrium magnetization at the (0001) surface, called boundary magnetization (BM), which is coupled to the bulk antiferromagnetic order parameter. In order to verify whether this symmetry sensitive BM persists in alloys, we investigate the impact of diamagnetic dilution on chromia thin films alloyed with the isostructural α-Al2O3 (alumina). Single-crystalline Cr2−xAlxO3 thin films with (0001) surface orientation and varying stoichiometry have been grown by sputter codeposition in the concentration range between x = 0 and x = 0.6. For these samples, we find the corundum crystal structure, the antiferromagnetic ordering, and the boundary magnetization to be preserved. We also find that the critical temperature TN can be tuned by alloying with α-Al2O3, using the BM as a probe to study the magnetic phase transition. Furthermore, we were able to evaluate the critical exponent and the absolute BM values for different samples. Both properties corroborate that the observed magnetic signals originate from the BM rather than the bulk of the samples
Giant temperature dependence of the spin reversal field in magnetoelectric chromia
Magnetic field-induced reversal of surface spin polarization for the magnetoelectric antiferromagnet chromia is studied via magnetometry in (0001)-textured thin films of various thicknesses. Reversal solely by magnetic means has been experimentally evidenced in sufficiently thin films. It sets the field-response of chromia films apart from bulk behavior, where switching between time-reversed single domain states requires the simultaneous presence of electric and magnetic fields. In our detailed experiments, we furthermore observe a giant sensitivity of the coercive field on temperature, thus, indicating the potential of magnetoelectric antiferromagnets as promising candidates for energy assisted magnetic recording media
Magnetic field induced switching of the antiferromagnetic order parameter in thin films of magnetoelectric chromia
A Landau-theoretical approach is utilized to model the magnetic field induced reversal of the antiferromagnetic order parameter in thin films of magnetoelectric antiferromagnets. A key ingredient of this peculiar switching phenomenon is the presence of a robust spin polarized state at the surface of the antiferromagnetic films. Surface or boundary magnetization is symmetry allowed in magnetoelectric antiferromagnets and experimentally established for chromia thin films. It couples rigidly to the antiferromagnetic order parameter and its Zeeman energy creates a pathway to switch the antiferromagnet via magnetic field application. In the framework of a minimalist Landau free energy expansion, the temperature dependence of the switching field and the field dependence of the transition width are derived. Least-squares fits to magnetometry data of (0001) textured chromia thin films strongly support this model of the magnetic reversal mechanism
HALL BAR DEVICE FOR MEMORY AND LOGIC APPLICATIONS
A hall bar device for a memory or logic application can include a gate electrode, a boron-doped chromia layer on the gate electrode; and a hall bar structure with four legs on the boron-doped chromia layer. For a memory application, the hall bar device can be written to by applying a pulse voltage across the gate electrode and one leg of the hall bar structure in the absence of an applied magnetic field; and can be read from by measuring a voltage across the one leg of the hall bar structure and its opposite leg
Giant temperature dependence of the spin reversal field in magnetoelectric chromia
Magnetic field-induced reversal of surface spin polarization for the magnetoelectric antiferromagnet chromia is studied via magnetometry in (0001)-textured thin films of various thicknesses. Reversal solely by magnetic means has been experimentally evidenced in sufficiently thin films. It sets the field-response of chromia films apart from bulk behavior, where switching between time-reversed single domain states requires the simultaneous presence of electric and magnetic fields. In our detailed experiments, we furthermore observe a giant sensitivity of the coercive field on temperature, thus, indicating the potential of magnetoelectric antiferromagnets as promising candidates for energy assisted magnetic recording media
- …