10 research outputs found

    Dynamic, but not necessarily disordered, human-virus interactions mediated through slims in viral proteins

    Get PDF
    Most viruses have small genomes that encode proteins needed to perform essential enzy-matic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database

    Distinct Peripheral Blood RNA Responses to Salmonella in Pigs Differing in Salmonella Shedding Levels: Intersection of IFNG, TLR and miRNA Pathways

    Get PDF
    Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n = 40) was inoculated with ST and peripheral blood and fecal Salmonella counts were collected between 2 and 20 days post-inoculation (dpi). Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. Global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip® analysis of peripheral blood RNA at day 0 and 2 dpi. ST inoculation triggered substantial gene expression changes in the pigs and there was differential expression of many genes between LS and PS pigs. Analysis of the differential profiles of gene expression within and between PS and LS phenotypic classes identified distinct regulatory pathways mediated by IFN-γ, TNF, NF-κB, or one of several miRNAs. We confirmed the activation of two regulatory factors, SPI1 and CEBPB, and demonstrated that expression of miR-155 was decreased specifically in the PS animals. These data provide insight into specific pathways associated with extremes in Salmonella fecal shedding that can be targeted for further exploration on why some animals develop a carrier state. This knowledge can also be used to develop rational manipulations of genetics, pharmaceuticals, nutrition or husbandry methods to decrease Salmonella colonization, shedding and spread

    Comparative Analysis of Structural Features in SLiMs from Eukaryotes, Bacteria, and Viruses with Importance for Host-Pathogen Interactions

    No full text
    Protein-protein interactions drive functions in eukaryotes that can be described by short linear motifs (SLiMs). Conservation of SLiMs help illuminate functional SLiMs in eukaryotic protein families. However, the simplicity of eukaryotic SLiMs makes them appear by chance due to mutational processes not only in eukaryotes but also in pathogenic bacteria and viruses. Further, functional eukaryotic SLiMs are often found in disordered regions. Although proteomes from pathogenic bacteria and viruses have less disorder than eukaryotic proteomes, their proteins can successfully mimic eukaryotic SLiMs and disrupt host cellular function. Identifying important SLiMs in pathogens is difficult but essential for understanding potential host-pathogen interactions. We performed a comparative analysis of structural features for experimentally verified SLiMs from the Eukaryotic Linear Motif (ELM) database across viruses, bacteria, and eukaryotes. Our results revealed that many viral SLiMs and specific motifs found across viruses and eukaryotes, such as some glycosylation motifs, have less disorder. Analyzing the disorder and coil properties of equivalent SLiMs from pathogens and eukaryotes revealed that some motifs are more structured in pathogens than their eukaryotic counterparts and vice versa. These results support a varying mechanism of interaction between pathogens and their eukaryotic hosts for some of the same motifs

    Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins

    No full text
    Molecular mimicry between viral antigens and host proteins can produce cross-reacting antibodies leading to autoimmunity. The coronavirus SARS-CoV-2 causes COVID-19, a disease curiously resulting in varied symptoms and outcomes, ranging from asymptomatic to fatal. Autoimmunity due to cross-reacting antibodies resulting from molecular mimicry between viral antigens and host proteins may provide an explanation. Thus, we computationally investigated molecular mimicry between SARS-CoV-2 Spike and known epitopes. We discovered molecular mimicry hotspots in Spike and highlight two examples with tentative high autoimmune potential and implications for understanding COVID-19 complications. We show that a TQLPP motif in Spike and thrombopoietin shares similar antibody binding properties. Antibodies cross-reacting with thrombopoietin may induce thrombocytopenia, a condition observed in COVID-19 patients. Another motif, ELDKY, is shared in multiple human proteins, such as PRKG1 involved in platelet activation and calcium regulation, and tropomyosin, which is linked to cardiac disease. Antibodies cross-reacting with PRKG1 and tropomyosin may cause known COVID-19 complications such as blood-clotting disorders and cardiac disease, respectively. Our findings illuminate COVID-19 pathogenesis and highlight the importance of considering autoimmune potential when developing therapeutic interventions to reduce adverse reactions

    Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas

    No full text
    Peripheral T-cell lymphomas (PTCLs) are a heterogeneous and poorly understood group of non Hodgkin lymphomas(1,2). Here we combined whole exome sequencing of 12 tumor-normal DNA pairs, RNAseq analysis and targeted deep sequencing to identify new genetic alterations in PTCL transformation. These analyses identified highly recurrent epigenetic factor mutations in TET2, DNMT3A and IDH2 as well as a new highly prevalent RHOA p.Gly17Val (NM_001664) mutation present in 22/35 (67%) of angioimmunoblastic T-cell lymphomas (AITL) and in 8/44 (18%) not otherwise specified PTCL (PTCL NOS) samples. Mechanistically, the RHOA Gly17Val protein interferes with RHOA signaling in biochemical and cellular assays, an effect potentially mediated by the sequestration of activated Guanine Exchange Factor (GEF) proteins. In addition, we describe new and recurrent, albeit less frequent, genetic defects including mutations in FYN, ATM, B2M and CD58 implicating SRC signaling, impaired DNA damage response and escape from immune surveillance mechanisms in the pathogenesis of PTCL

    Genomics and drug profiling of fatal TCF3-HLF−positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options

    No full text
    corecore