2 research outputs found

    The Newtonian Limit of Hermitian Gravity

    Full text link
    We construct the gauge invariant potentials of Hermitian Gravity and derive the linearized equations of motion they obey. A comparison reveals a striking similarity to the Bardeen potentials of general relativity. We then consider the response to a point particle source, and discuss in what sense the solutions of Hermitian Gravity reduce to the Newtonian potentials. In a rather intriguing way, the Hermitian Gravity solutions exhibit a generalized reciprocity symmetry originally proposed by Born in the 1930s. Finally, we consider the trajectories of massive and massless particles under the influence of a potential. The theory correctly reproduces the Newtonian limit in three dimensions and the nonrelativistic acceleration equation. However, it differs from the light deflection calculated in linearized generalrelativity by 25%. While the specific complexification of general relativity by extension to Hermitian spaces performed here does not agree with experiment, it does possess useful properties for quantization and is well-behaved around singularities. Another form of complex general relativity may very well agree with experimental data.Comment: The published version in Gen. Rel. Grav. 24 pages, no figure

    Resolving Curvature Singularities in Holomorphic Gravity

    Get PDF
    We formulate holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature singularity. Likewise, typical observers do not experience Big Bang singularity. Unlike Hermitian gravity \cite{MantzHermitianGravity}, Holomorphic gravity does not respect the reciprocity symmetry and thus it is mainly a toy model for a gravity theory formulated on complex space-times. Yet it is a model that deserves a closer investigation since in many aspects it resembles Hermitian gravity and yet calculations are simpler. We have indications that holomorphic gravity reduces to the laws of general relativity correctly at large distance scales.Comment: 14 pages, 7 figure
    corecore