23 research outputs found
Recommended from our members
Parallel Assembly of LIGA Components
In this paper, a prototype robotic workcell for the parallel assembly of LIGA components is described. A Cartesian robot is used to press 386 and 485 micron diameter pins into a LIGA substrate and then place a 3-inch diameter wafer with LIGA gears onto the pins. Upward and downward looking microscopes are used to locate holes in the LIGA substrate, pins to be pressed in the holes, and gears to be placed on the pins. This vision system can locate parts within 3 microns, while the Cartesian manipulator can place the parts within 0.4 microns
Recommended from our members
A Batch Wafer Scale LIGA Assembly and Packaging Technique vai Diffusion Bonding
A technique using diffusion bonding (or solid-state welding) has been used to achieve batch fabrication of two- level nickel LIGA structures. Interlayer alignment accuracy of less than 1 micron is achieved using press-fit gauge pins. A mini-scale torsion tester was built to measure the diffusion bond strength of LIGA formed specimens that has shown successful bonding at temperatures of 450"C at 7 ksi pressure with bond strength greater than 100 Mpa. Extensions to this basic process to allow for additional layers and thereby more complex assemblies as well as commensurate packaging are discussed
Recommended from our members
Deep X-Ray Lithography Based Fabrication of Rare-Earth Based Permanent Magnets and their Applications to Microactuators
Precision high aspect-ratio micro molds constructed by deep x-ray lithography have been used to batch fabricate accurately shaped bonded rare-earth based permanent magnets with features as small as 5 microns and thicknesses up to 500 microns. Maximum energy products of up to 8 MGOe have been achieved with a 20%/vol. epoxy bonded melt-spun isotropic Nd2Fe14b powder composite. Using individually processed sub- millimeter permanent sections multipole rotors have been assembled. Despite the fact that these permanent magnet structures are small, their magnetic field producing capability remains the same as at any scale. Combining permanent magnet structures with soft magnetic materials and micro-coils makes possible new and more efficient magnetic microdevices
Recommended from our members
Torsion Testing of Diffusion Bonded LIGA Formed Nickel
A test technique has been devised which is suitable for the testing of the bond strength of batch diffusion bonded LIGA or DXRL defined structures. The method uses a torsion tester constructed with the aid of LIGA fabrication and distributed torsion specimens which also make use of the high aspect ratio nature of DXRL based processing. Measurements reveal achieved bond strengths of 130MPa between electroplated nickel with a bond temperature of 450 C at 7 ksi pressure which is a sufficiently low temperature to avoid mechanical strength degradation
Recommended from our members
Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials
LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu
Advances in LIGA-Based Post-Mold Fabrication
The establishment of a process to allow planarization of deep x-ray lithography based microfabncated metal components via diamond lapping has enabled examination of three additional microfabrication issues. The areas of improvement that are discussed include materials, microassembly and packaging, and multilevel fabrication. New materials work has centered on magnetic materials including precision micromagnets and surface treatments of electrodeposited materials. Assembly and packaging has been aided by deep silicon etch processing and the use of conventional precision milling equipment combined with press-tit assembly. Diffhsion bonding is shown to be a particularly important approach to achieving multilevel metal mechanisms and furthermore shows promise for achieving batch assembled and packaged high aspect-ratio metal micromechanics
Recommended from our members
Advances in LIGA-Based Post-Mold Fabrication
The establishment of a process to allow planarization of deep x-ray lithography based microfabncated metal components via diamond lapping has enabled examination of three additional microfabrication issues. The areas of improvement that are discussed include materials, microassembly and packaging, and multilevel fabrication. New materials work has centered on magnetic materials including precision micromagnets and surface treatments of electrodeposited materials. Assembly and packaging has been aided by deep silicon etch processing and the use of conventional precision milling equipment combined with press-tit assembly. Diffhsion bonding is shown to be a particularly important approach to achieving multilevel metal mechanisms and furthermore shows promise for achieving batch assembled and packaged high aspect-ratio metal micromechanics
Recommended from our members
Optical measurement of LIGA milliengine performance
Understanding the parameters that affect the performance of milliscale and microscale actuators is essential to the development of optimized designs and fabrication processes, as well as the qualification of devices for commercial applications. This paper discusses the development of optical techniques for motion measurements of LIGA fabricated milliengines. LIGA processing permits the fabrication of precision millimeter-sized machine elements that cannot be fabricated by conventional miniature machining techniques because of their small feature sizes. In addition, tolerances of 1 part in 10{sup 3} to 10{sup 4} may be maintained in millimeter sized components with this processing technique. Optical techniques offer a convenient means for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. Optical techniques can also be used to provide feedback signals needed for control and sensing of the state of the machine. Optical probe concepts and experimental data obtained using a milliengine developed at Sandia National Laboratories are presented
Recommended from our members
Silicon microfabrication technologies for nano-satellite applications
Silicon (Si) has a strength to density ratio of 3.0({sigma}{sub y}/{delta}=(6.8GPa/2.3g/cc)), an order-of-magnitude higher than titanium, aluminum, or stainless steel. Silicon also demonstrates favorable thermal, optical, and electrical properties making it ideal for use as a structural foundation for autonomous, mesoscopic systems such as nanosatellites. Using Si substrates, a structure that can simultaneously act as a thermal management system, a radiation shield, an optical material, a package, and a semiconductor substrate can be realized
Recommended from our members
Performance of Ultra Hard Carbon Wear Coatings on Microgears Fabricated by Liga
Stiction and friction are of concern for the reliable, long-term application of Ni-alloy micromachines. We have found that the application of a 30-70 nm hard carbon coating produces a significant reduction in the friction coefficient and wear rate of electroformed Ni substrates in reciprocating sliding contact under simulated MEMS operating conditions. To evaluate the performance of coated components, a series of 70-pm-thick microgears ranging in diameter from 0.2 to 2.2 mm were fabricated from electroformed Ni via standard LIGA processes and fixtured on posts in preparation for the coating procedure. A pulsed vacuum- arc deposition process was used to deposit a carbon coating on the gears with the plasma incident at a shallow angle to the gears' top surface. A sample bias of -2 keV was used in order to produce a coating with relatively low stress and good adhesion while maintaining high hardness. This coating process is known to be somewhat comformal to the component surfaces. The coating uniformity, particularly in the high-aspect-ratio areas between the gear teeth, was evaluated with micro-Raman spectroscopy. It is shown that the coating can be applied uniformly on the top gear surface. Between the gear teeth the coating was the same thickness as on top of the gear down to a point 50 ~m below the top surface. Below that point (i.e. between 50 and 70 Lm), the coating thickness is somewhat thinner, but is still present. These results demonstrate that it is possible to a deposit hard carbon coating on microgears to reduce friction and wear in micromachines