27,685 research outputs found
Monodisperse atomizers for agricultural aviation applications
Conceptual designs of two monodisperse spray nozzles are described and the rationale used in each design is discussed. The nozzles were designed to eliminate present problems in agricultural aviation applications, such as ineffective plant coverage, drift due to small droplets present in the spray being dispersed, and nonuniform swath coverages. Monodisperse atomization techniques are reviewed and a synopsis of the information obtained concerning agricultural aviation spray applications is presented
Fog dispersion
The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems
A review of the meteorological parameters which affect aerial application
The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available
Frequency Dependent Specific Heat from Thermal Effusion in Spherical Geometry
We present a novel method of measuring the frequency dependent specific heat
at the glass transition applied to 5-polyphenyl-4-ether. The method employs
thermal waves effusing radially out from the surface of a spherical thermistor
that acts as both a heat generator and thermometer. It is a merit of the method
compared to planar effusion methods that the influence of the mechanical
boundary conditions are analytically known. This implies that it is the
longitudinal rather than the isobaric specific heat that is measured. As
another merit the thermal conductivity and specific heat can be found
independently. The method has highest sensitivity at a frequency where the
thermal diffusion length is comparable to the radius of the heat generator.
This limits in practise the frequency range to 2-3 decades. An account of the
3omega-technique used including higher order terms in the temperature
dependency of the thermistor and in the power generated is furthermore given.Comment: 17 pages, 15 figures, Substantially revised versio
Influence of clamp-widening on the quality factor of nanomechanical silicon nitride resonators
Nanomechanical resonators based on strained silicon nitride (SiN)
have received a large amount of attention in fields such as sensing and quantum
optomechanics due to their exceptionally high quality factors (s).
Room-temperature s approaching 1 billion are now in reach by means of
phononic crystals (soft-clamping) and strain engineering. Despite great
progress in enhancing s, difficulties in fabrication of soft-clamped samples
limits their implementation into actual devices. An alternative means of
achieving ultra-high s was shown using trampoline resonators with engineered
clamps, which serves to localize the stress to the center of the resonator,
while minimizing stress at the clamping. The effectiveness of this approach has
since come into question from recent studies employing string resonators with
clamp-tapering. Here, we investigate this idea using nanomechanical string
resonators with engineered clampings similar to those presented for
trampolines. Importantly, the effect of orienting the strings diagonally or
perpendicularly with respect to the silicon frame is investigated. It is found
that increasing the clamp width for diagonal strings slightly increases the
s of the fundamental out-of-plane mode at small radii, while perpendicular
strings only deteriorate with increasing clamp width. Measured s agree well
with finite element method simulations even for higher-order resonances. The
small increase cannot account for previously reported s of trampoline
resonators. Instead, we propose the effect to be intrinsic and related to
surface and radiation losses.Comment: 7 pages, 4 figure
Transitions in non-conserving models of Self-Organized Criticality
We investigate a random--neighbours version of the two dimensional
non-conserving earthquake model of Olami, Feder and Christensen [Phys. Rev.
Lett. {\bf 68}, 1244 (1992)]. We show both analytically and numerically that
criticality can be expected even in the presence of dissipation. As the
critical level of conservation, , is approached, the cut--off of the
avalanche size distribution scales as . The
transition from non-SOC to SOC behaviour is controlled by the average branching
ratio of an avalanche, which can thus be regarded as an order
parameter of the system. The relevance of the results are discussed in
connection to the nearest-neighbours OFC model (in particular we analyse the
relevance of synchronization in the latter).Comment: 8 pages in latex format; 5 figures available upon reques
Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice
We demonstrate preparation and detection of an atom number distribution in a
one-dimensional atomic lattice with the variance dB below the Poissonian
noise level. A mesoscopic ensemble containing a few thousand atoms is trapped
in the evanescent field of a nanofiber. The atom number is measured through
dual-color homodyne interferometry with a pW-power shot noise limited probe.
Strong coupling of the evanescent probe guided by the nanofiber allows for a
real-time measurement with a precision of atoms on an ensemble of some
atoms in a one-dimensional trap. The method is very well suited for
generating collective atomic entangled or spin-squeezed states via a quantum
non-demolition measurement as well as for tomography of exotic atomic states in
a one-dimensional lattice
Integral field spectroscopy of QSO host galaxies
We describe a project to study the state of the ISM in ~20 low redshift
(z<0.3) QSO host galaxies observed with the PMAS integral field spectrograph.
We describe method developement to access the stellar and gas component of the
spectrum without the strong nuclear emission to access the host galaxy
properties also in the central region. It shows that integral field
spectroscopy promises to be very efficient to study the gas distribution and
its velocity field, and also spatially resolved stellar population in the host
galaxies also of luminous AGN.Comment: 4 pages, 6 figures, Euro3D Science Workshop, Cambridge, May 2003, AN,
accepte
- …