22,922 research outputs found

    Spin-Driven Nematic Instability of the Multi-Orbital Hubbard Model: Application to Iron-Based Superconductors

    Full text link
    Nematic order resulting from the partial melting of density-waves has been proposed as the mechanism to explain nematicity in iron-based superconductors. An outstanding question, however, is whether the microscopic electronic model for these systems -- the multi-orbital Hubbard model -- displays such an ordered state as its leading instability. In contrast to usual electronic instabilities, such as magnetic and charge order, this fluctuation-driven phenomenon cannot be captured by the standard RPA method. Here, by including fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its nematic susceptibility and contrast it with its ferro-orbital order susceptibility, showing that its leading instability is the spin-driven nematic phase. Our results also demonstrate the primary role played by the dxyd_{xy} orbital in driving the nematic transition, and reveal that high-energy magnetic fluctuations are essential to stabilize nematic order in the absence of magnetic order.Comment: 8 pages, 6 figure

    The Top Triangle Moose

    Get PDF
    We introduce a deconstructed model that incorporates both Higgsless and top-color mechanisms. The model alleviates the typical tension in Higgsless models between obtaining the correct top quark mass and keeping delta-rho small. It does so by singling out the top quark mass generation as arising from a Yukawa coupling to an effective top-Higgs which develops a small vacuum expectation value, while electroweak symmetry breaking results largely from a Higgsless mechanism. As a result, the heavy partners of the SM fermions can be light enough to be seen at the LHC.Comment: To appear in proceedings of SCGT09, Nagoya, Japan. 5 page

    Casimir energy density in closed hyperbolic universes

    Full text link
    The original Casimir effect results from the difference in the vacuum energies of the electromagnetic field, between that in a region of space with boundary conditions and that in the same region without boundary conditions. In this paper we develop the theory of a similar situation, involving a scalar field in spacetimes with compact spatial sections of negative spatial curvature.Comment: 10 pages. Contribution to the "Fifth Alexander Friedmann International Seminar on Gravitation and Cosmology," Joao Pessoa, Brazil, 2002. Revised version, with altered Abstract and one new referenc

    A study of quantum decoherence in a system with Kolmogorov-Arnol'd-Moser tori

    Get PDF
    We present an experimental and numerical study of the effects of decoherence on a quantum system whose classical analogue has Kolmogorov-Arnol'd-Moser (KAM) tori in its phase space. Atoms are prepared in a caesium magneto-optical trap at temperatures and densities which necessitate a quantum description. This real quantum system is coupled to the environment via spontaneous emission. The degree of coupling is varied and the effects of this coupling on the quantum coherence of the system are studied. When the classical diffusion through a partially broken torus is < hbar, diffusion of quantum particles is inhibited. We find that increasing decoherence via spontaneous emission increases the transport of quantum particles through the boundary.Comment: 19 pages including 6 figure

    Receiver Architectures for MIMO-OFDM Based on a Combined VMP-SP Algorithm

    Get PDF
    Iterative information processing, either based on heuristics or analytical frameworks, has been shown to be a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within this context, algorithms performing message-passing on a probabilistic graph, such as the sum-product (SP) and variational message passing (VMP) algorithms, have become increasingly popular. In this contribution, we apply a combined VMP-SP message-passing technique to the design of receivers for MIMO-ODFM systems. The message-passing equations of the combined scheme can be obtained from the equations of the stationary points of a constrained region-based free energy approximation. When applied to a MIMO-OFDM probabilistic model, we obtain a generic receiver architecture performing iterative channel weight and noise precision estimation, equalization and data decoding. We show that this generic scheme can be particularized to a variety of different receiver structures, ranging from high-performance iterative structures to low complexity receivers. This allows for a flexible design of the signal processing specially tailored for the requirements of each specific application. The numerical assessment of our solutions, based on Monte Carlo simulations, corroborates the high performance of the proposed algorithms and their superiority to heuristic approaches

    Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice

    Full text link
    We demonstrate preparation and detection of an atom number distribution in a one-dimensional atomic lattice with the variance 14-14 dB below the Poissonian noise level. A mesoscopic ensemble containing a few thousand atoms is trapped in the evanescent field of a nanofiber. The atom number is measured through dual-color homodyne interferometry with a pW-power shot noise limited probe. Strong coupling of the evanescent probe guided by the nanofiber allows for a real-time measurement with a precision of ±8\pm 8 atoms on an ensemble of some 10310^3 atoms in a one-dimensional trap. The method is very well suited for generating collective atomic entangled or spin-squeezed states via a quantum non-demolition measurement as well as for tomography of exotic atomic states in a one-dimensional lattice

    Coupled Magnetic Excitations in Single Crystal PrBa2Cu3O6.2

    Full text link
    The dispersion of the low-energy magnetic excitations of the Pr sublattice in PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a single crystal. The dispersion, which shows the effect of interactions with the Cu spin-waves, is well described by a model of the coupled Cu-Pr magnetic system. This enables values for the principal exchange constants to be determined, which suggest that both Pr-Pr and Cu-Pr interactions are important in producing the anomalously high ordering temperature of the Pr sublattice. Measurements of the Cu optic spin wave mode show that the inter-layer Cu-Cu exchange is significantly lower than in YBa2Cu3O6.2.Comment: To be published Phys. Rev. Let

    Electric Polarizability of Neutral Hadrons from Lattice QCD

    Full text link
    By simulating a uniform electric field on a lattice and measuring the change in the rest mass, we calculate the electric polarizability of neutral mesons and baryons using the methods of quenched lattice QCD. Specifically, we measure the electric polarizability coefficient from the quadratic response to the electric field for 10 particles: the vector mesons ρ0\rho^0 and K0K^{*0}; the octet baryons n, Σ0\Sigma^0, Λo0\Lambda_{o}^{0}, Λs0\Lambda_{s}^{0}, and Ξ0\Xi^0; and the decouplet baryons Δ0\Delta^0, Σ0\Sigma^{*0}, and Ξ0\Xi^{*0}. Independent calculations using two fermion actions were done for consistency and comparison purposes. One calculation uses Wilson fermions with a lattice spacing of a=0.10a=0.10 fm. The other uses tadpole improved L\"usher-Weiss gauge fields and clover quark action with a lattice spacing a=0.17a=0.17 fm. Our results for neutron electric polarizability are compared to experiment.Comment: 25 pages, 20 figure
    corecore