787 research outputs found

    ASTEC -- the Aarhus STellar Evolution Code

    Full text link
    The Aarhus code is the result of a long development, starting in 1974, and still ongoing. A novel feature is the integration of the computation of adiabatic oscillations for specified models as part of the code. It offers substantial flexibility in terms of microphysics and has been carefully tested for the computation of solar models. However, considerable development is still required in the treatment of nuclear reactions, diffusion and convective mixing.Comment: Astrophys. Space Sci, in the pres

    Multi-timescale Solar Cycles and the Possible Implications

    Full text link
    Based on analysis of the annual averaged relative sunspot number (ASN) during 1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as ≥\geq X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.Comment: 8 pages, 4 figure

    Dimensionality of spin modulations in 1/8-doped lanthanum cuprates from the perspective of NQR and muSR experiments

    Full text link
    We investigate the dimensionality of inhomogeneous spin modulation patterns in the cuprate family of high-temperature superconductors with particular focus on 1/8-doped lanthanum cuprates. We compare one-dimensional stripe modulation pattern with two-dimensional checkerboard of spin vortices in the context of nuclear quadrupole resonance(NQR) and muon spin rotation(muSR) experiments. In addition, we also consider the third pattern, a two-dimensional superposition of spin spirals. Overall, we have found that none of the above patterns leads to a consistent interpretation of the two types of experiments considered. This, in particular, implies that the spin vortex checkerboard cannot be ruled out on the basis of available NQR/muSR experimental results.Comment: 6 pages, 2 figure

    Renormalized quantum tomography

    Full text link
    The core of quantum tomography is the possibility of writing a generally unbounded complex operator in form of an expansion over operators that are generally nonlinear functions of a generally continuous set of spectral densities--the so-called "quorum" of observables. The expansion is generally non unique, the non unicity allowing further optimization for given criteria. The mathematical problem of tomography is thus the classification of all such operator expansions for given (suitably closed) linear spaces of unbounded operators--e.g. Banach spaces of operators with an appropriate norm. Such problem is a difficult one, and remains still open, involving the theory of general basis in Banach spaces, a still unfinished chapter of analysis. In this paper we present new nontrivial operator expansions for the quorum of quadratures of the harmonic oscillator, and introduce a first very preliminary general framework to generate new expansions based on the Kolmogorov construction. The material presented in this paper is intended to be helpful for the solution of the general problem of quantum tomography in infinite dimensions, which corresponds to provide a coherent mathematical framework for operator expansions over functions of a continuous set of spectral densities.Comment: 23 pages, no figure

    Microarrays in cancer research

    Get PDF
    Microarray technology has presented the scientific community with a compelling approach that allows for simultaneous evaluation of all cellular processes at once. Cancer, being one of the most challenging diseases due to its polygenic nature, presents itself as a perfect candidate for evaluation by this approach. Several recent articles have provided significant insight into the strengths and limitations of microarrays. Nevertheless, there are strong indications that this approach will provide new molecular markers that could be used in diagnosis and prognosis of cancers (1, 2). To achieve these goals it is essential that there is a seamless integration of clinical and molecular biological data that allows us to elucidate genes and pathways involved in various cancers. To this effect we are currently evaluating gene expression profiles in human brain, ovarian, breast and hematopoetic, lung, colorectal, head and neck and biliary tract cancers. To address the issues we have a joint team of scientists, doctors and computer scientists from two Virginia Universities and a major healthcare provider. The study has been divided into several focus groups that include; Tissue Bank Clinical & Pathology Laboratory Data, Chip Fabrication, QA/QC, Tissue Devitalization, Database Design and Data Analysis, using multiple microarray platforms. Currently over 300 consenting patients have been enrolled in the study with the largest number being that of breast cancer patients. Clinical data on each patient is being compiled into a secure and interactive relational database and integration of these data elements will be accomplished by a common programming interface. This clinical database contains several key parameters on each patient including demographic (risk factors, nutrition, co-morbidity, familial history), histopathology (non genetic predictors), tumor, treatment and follow-up information. Gene expression data derived from the tissue samples will be linked to this database, which allows us to query the data at multiple levels. The challenge of tissue acquisition and processing is of paramount importance to the success of this venture. A tissue devitalization timeline protocol was devised to ensure sample and RNA integrity. Stringent protocols are being employed to ascertain accurate tumor homogeneity, by serial dissection of each tumor sample at 10\u3bcM frozen sections followed by histopathological evaluation. The multiple platforms being utilized in this study include Affimetrix, Oligo-Chips and custom-designed cDNA arrays. Selected RNA samples will be evaluated on each platform between the groups. Analysis steps will involve normalization and standardization of gene expression data followed by hierarchical clustering to determine co-regulation profiles. The aim of this conjoint effort is to elucidate pathways and genes involved in various cancers, resistance mechanisms, molecular markers for diagnosis and prognosis

    Gravitational Field of Fractal Distribution of Particles

    Get PDF
    In this paper we consider the gravitational field of fractal distribution of particles. To describe fractal distribution, we use the fractional integrals. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of the Gauss's law, we consider the simple examples of the fields of homogeneous fractal distribution. The examples of gravitational moments for fractal distribution are considered.Comment: 14 pages, LaTe
    • …
    corecore