29,399 research outputs found

    Educational planning for utilization of space shuttle (ED-PLUSS). Executive summary: Identification and evaluation of educational uses and users for the STS

    Get PDF
    The development and application of educational programs to improve public awareness of the space shuttle/space lab capabilities are reported. Special efforts were made to: identify the potential user, identify and analyze space education programs, plan methods for user involvement, develop techniques and programs to encourage new users, and compile follow-on ideas

    Identification and evaluation of educational uses and users for the STS. Educational planning for utilization of space shuttle ED-PLUSS

    Get PDF
    A planning and feasibility study to identify and document a methodology needed to incorporate educational programs into future missions and operations of the space transportation system was conducted. Six tasks were identified and accomplished during the study. The task statements are as follows: (1) potential user identification, (2) a review of space education programs, (3) development of methodology for user involvement, (4) methods to encourage user awareness, (5) compilation of follow-on ideas, and (6) response to NASA questions. Specific recommendations for improving the educational coverage of space activities are provided

    An assessment of two decades of contaminant monitoring in the Nation’s Coastal Zone.

    Get PDF
    Executive Summary: Information found in this report covers the years 1986 through 2005. Mussel Watch began monitoring a suite of trace metals and organic contaminants such as DDT, PCBs and PAHs. Through time additional chemicals were added, and today approximately 140 analytes are monitored. The Mussel Watch Program is the longest running estuarine and coastal pollutant monitoring effort conducted in the United States that is national in scope each year. Hundreds of scientific journal articles and technical reports based on Mussel Watch data have been written; however, this report is the first that presents local, regional and national findings across all years in a Quick Reference format, suitable for use by policy makers, scientists, resource managers and the general public. Pollution often starts at the local scale where high concentrations point to a specific source of contamination, yet some contaminants such as PCBs are atmospherically transported across regional and national scales, resulting in contamination far from their origin. Findings presented here showed few national trends for trace metals and decreasing trends for most organic contaminants; however, a wide variety of trends, both increasing and decreasing, emerge at regional and local levels. For most organic contaminants, trends have resulted from state and federal regulation. The highest concentrations for both metal and organic contaminants are found near urban and industrial areas. In addition to monitoring throughout the nation’s coastal shores and Great Lakes, Mussel Watch samples are stored in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. For example, there is heightened awareness of a group of flame retardants that are finding their way into the marine environment. These compounds, known as polybrominated diphenyl ethers (PBDEs), are now being studied using historic samples from the specimen bank and current samples to determine their spatial distribution. We will continue to use this kind of investigation to assess new contaminant threats. We hope you find this document to be valuable, and that you continue to look towards the Mussel Watch Program for information on the condition of your coastal waters. (PDF contains 118 pages

    Inflation expectations and risk premiums in an arbitrage-free model of nominal and real bond yields

    Get PDF
    Differences between yields on comparable-maturity U.S. Treasury nominal and real debt, the so-called breakeven inflation (BEI) rates, are widely used indicators of inflation expectations. However, better measures of inflation expectations could be obtained by subtracting inflation risk premiums from the BEI rates. We provide such decompositions using an estimated affine arbitrage-free model of the term structure that captures the pricing of both nominal and real Treasury securities. Our empirical results suggest that long-term inflation expectations have been well anchored over the past few years, and inflation risk premiums, although volatile, have been close to zero on average.Inflation (Finance) ; Treasury bonds

    Extracting deflation probability forecasts from Treasury yields

    Get PDF
    We construct probability forecasts for episodes of price deflation (i.e., a falling price level) using yields on nominal and real U.S. Treasury bonds. The deflation probability forecasts identify two "deflation scares" during the past decade: a mild one following the 2001 recession, and a more serious one starting in late 2008 with the deepening of the financial crisis. The estimated deflation probabilities are generally consistent with those from macroeconomic models and surveys of professional forecasters, but they also provide highfrequency insight into the views of financial market participants. The probabilities can also be used to price the deflation option embedded in real Treasury bonds.Deflation (Finance)

    Transitions in non-conserving models of Self-Organized Criticality

    Full text link
    We investigate a random--neighbours version of the two dimensional non-conserving earthquake model of Olami, Feder and Christensen [Phys. Rev. Lett. {\bf 68}, 1244 (1992)]. We show both analytically and numerically that criticality can be expected even in the presence of dissipation. As the critical level of conservation, αc\alpha_c, is approached, the cut--off of the avalanche size distribution scales as Ο∌(αc−α)−3/2\xi\sim(\alpha_c-\alpha)^{-3/2}. The transition from non-SOC to SOC behaviour is controlled by the average branching ratio σ\sigma of an avalanche, which can thus be regarded as an order parameter of the system. The relevance of the results are discussed in connection to the nearest-neighbours OFC model (in particular we analyse the relevance of synchronization in the latter).Comment: 8 pages in latex format; 5 figures available upon reques

    The Temperature Evolution of the Out-of-Plane Correlation Lengths of Charge-Stripe Ordered La(1.725)Sr(0.275)NiO(4)

    Full text link
    The temperature dependence of the magnetic order of stripe-ordered La(1.725)Sr(0.275)NiO(4) is investigated by neutron diffraction. Upon cooling, the widths if the magnetic Bragg peaks are observed to broaden. The degree of broadening is found to be very different for l = odd-integer and l = even-integer magnetic peaks. We argue that the observed behaviour is a result of competition between magnetic and charge order.Comment: 3 figure

    The internal rotation profile of the B-type star KIC10526294 from frequency inversion of its dipole gravity modes and statistical model comparison

    Full text link
    The internal angular momentum distribution of a star is key to determine its evolution. Fortunately, the stellar internal rotation can be probed through studies of rotationally-split non-radial oscillation modes. In particular, detection of non-radial gravity modes (g modes) in massive young stars has become feasible recently thanks to the Kepler space mission. Our aim is to derive the internal rotation profile of the Kepler B8V star KIC 10526294 through asteroseismology. We interpret the observed rotational splittings of its dipole g modes using four different approaches based on the best seismic models of the star and their rotational kernels. We show that these kernels can resolve differential rotation the radiative envelope if a smooth rotational profile is assumed and the observational errors are small. Based on Kepler data, we find that the rotation rate near the core-envelope boundary is well constrained to 163±89163\pm89 nHz. The seismic data are consistent with rigid rotation but a profile with counter-rotation within the envelope has a statistical advantage over constant rotation. Our study should be repeated for other massive stars with a variety of stellar parameters in order to deduce the physical conditions that determine the internal rotation profile of young massive stars, with the aim to improve the input physics of their models.Comment: 52 pages, 32 figures, accepted for publication in The Astrophysical Journa

    Solar radiation observation stations with complete listing of data archived by the National Climatic Center, Asheville, North Carolina and initial listing of data not currently archived

    Get PDF
    A listing is provided of organizations taking solar radiation data, the 166 stations where observations are made, the type of equipment used, the form of the recorded data, and the period of operation of each station. Included is a listing of the data from 150 solar radiation stations collected over the past 25 years and stored by the National Climatic Center

    The Effect of Crystallization on the Pulsations of White Dwarf Stars

    Get PDF
    We consider the pulsational properties of white dwarf star models with temperatures appropriate for the ZZ Ceti instability strip and with masses large enough that they should be substantially crystallized. Our work is motivated by the existence of a potentially crystallized DAV, BPM 37093, and the expectation that digital surveys in progress will yield many more such massive pulsators. A crystallized core makes possible a new class of oscillations, the torsional modes, although we expect these modes to couple at most weakly to any motions in the fluid and therefore to remain unobservable. The p-modes should be affected at the level of a few percent in period, but are unlikely to be present with observable amplitudes in crystallizing white dwarfs any more than they are in the other ZZ Ceti's. Most relevant to the observed light variations in white dwarfs are the g-modes. We find that the kinetic energy of these modes is effectively excluded from the crystallized cores of our models. As increasing crystallization pushes these modes farther out from the center, the mean period spacing between radial overtones increases substantially with the crystallized mass fraction. In addition, the degree and structure of mode trapping is affected. The fact that some periods are strongly affected by changes in the crystallized mass fraction while others are not suggests that we may be able to disentangle the effects of crystallization from those due to different surface layer masses.Comment: 18 pages, 5 figures, accepted on 1999 July 2 for publication in the Astrophysical Journa
    • 

    corecore