172 research outputs found

    An Experimental Framework for 5G Wireless System Integration into Industry 4.0 Applications

    Get PDF
    The fourth industrial revolution, or Industry 4.0 (I4.0), makes use of wireless technologies together with other industrial Internet-of-Things (IIoT) technologies, cyber–physical systems (CPS), and edge computing to enable the optimization and the faster re-configuration of industrial production processes. As I4.0 deployments are ramping up, the practical integration of 5G wireless systems with existing industrial applications is being explored in both Industry and Academia, in order to find optimized strategies and to develop guidelines oriented towards ensuring the success of the industrial wireless digitalization process. This paper explores the challenges arisen from such integration between industrial systems and 5G wireless, and presents a framework applicable to achieve a structured and successful integration. The paper aims at describing the different aspects of the framework such as the application operational flow and its associated tools, developed based on analytical and experimental applied research methodologies. The applicability of the framework is illustrated by addressing the integration of 5G technology into a specific industrial use case: the control of autonomous mobile robots. The results indicate that 5G technology can be used for reliable fleet management control of autonomous mobile robots in industrial scenarios, and that 5G can support the migration of the on-board path planning intelligence to the edge-cloud

    Associations of fat mass and fat-free mass accretion in infancy with body composition and cardiometabolic risk markers at 5 years:The Ethiopian iABC birth cohort study

    Get PDF
    BackgroundAccelerated growth in early childhood is an established risk factor for later obesity and cardiometabolic disease, but the relative importance of fat mass (FM) and fat-free mass (FFM) accretion is not well understood. We aimed to study how FM and FFM at birth and their accretion during infancy were associated with body composition and cardiometabolic risk markers at 5 years.Methods and findingsHealthy children born at term were enrolled in the Infant Anthropometry and Body Composition (iABC) birth cohort between December 2008 and October 2012 at Jimma University Specialized Hospital in the city of Jimma, Ethiopia. FM and FFM were assessed using air displacement plethysmography a median of 6 times between birth and 6 months of age. In 507 children, we estimated individual FM and FFM at birth and their accretion over 0-3 and 3-6 months of age using linear-spline mixed-effects modelling. We analysed associations of FM and FFM at birth and their accretion in infancy with height, waist circumference, FM, FFM, and cardiometabolic risk markers at 5 years using multiple linear regression analysis. A total of 340 children were studied at the 5-year follow-up (mean age: 60.0 months; girls: 50.3%; mean wealth index: 45.5 out of 100; breastfeeding status at 4.5 to 6 months post-partum: 12.5% exclusive, 21.4% almost exclusive, 60.6% predominant, 5.5% partial/none). Higher FM accretion in infancy was associated with higher FM and waist circumference at 5 years. For instance, 100-g/month higher FM accretion in the periods 0-3 and 3-6 months was associated with 339 g (95% CI: 243-435 g, p ConclusionsFM accretion in early life was positively associated with markers of adiposity and lipid metabolism, but not with blood pressure and cardiometabolic markers related to glucose homeostasis. FFM accretion was primarily related to linear growth and FFM at 5 years

    Measurement of unique magnetic and superconducting phases in oxygen-doped high-temperature superconductors La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4+y</sub>

    Get PDF
    We present a combined magnetic neutron scattering and muon spin rotation study of the nature of the magnetic and superconducting phases in electronically phase separated La(2-x)Sr(x)CuO(4+y), x = 0.04, 065, 0.09. For all samples, we find long-range modulated magnetic order below T_N ~ T_c = 39 K. In sharp contrast wit oxygen-stoichiometric La(2-x)Sr(x)CuO(4), we find that the magnetic propagation vector as well as the ordered magnetic moment is independent of Sr content and consistent with that of the 'striped' cuprates. Our study provides direct proof that superoxygenation in La(2-x)Sr(x)CuO(4+y) allows the spin stripe ordered phase to emerge and phase separate from superconducting regions with the hallmarks of optimally doped oxygen-stoichiometric La(2-x)Sr(x)CuO(4)

    Kepler-68: Three Planets, One With a Density Between That of Earth and Ice Giants

    Full text link
    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit has mass 8.3 +/- 2.3 Earth, radius 2.31 +/- 0.07 Earth radii, and a density of 3.32 +/- 0.92 (cgs), giving Kepler-68b a density intermediate between that of the ice giants and Earth. Kepler-68c is Earth-sized with a radius of 0.953 Earth and transits on a 9.6 day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an orbital period of 580 +/- 15 days and minimum mass of Msin(i) = 0.947 Jupiter. Power spectra of the Kepler photometry at 1-minute cadence exhibit a rich and strong set of asteroseismic pulsation modes enabling detailed analysis of the stellar interior. Spectroscopy of the star coupled with asteroseismic modeling of the multiple pulsation modes yield precise measurements of stellar properties, notably Teff = 5793 +/- 74 K, M = 1.079 +/- 0.051 Msun, R = 1.243 +/- 0.019 Rsun, and density 0.7903 +/- 0.0054 (cgs), all measured with fractional uncertainties of only a few percent. Models of Kepler-68b suggest it is likely composed of rock and water, or has a H and He envelope to yield its density of about 3 (cgs).Comment: 32 pages, 13 figures, Accepted to Ap
    corecore