47 research outputs found

    Investigating Real-World Benefits of High-Frequency Gain in Bone-Anchored Users with Ecological Momentary Assessment and Real-Time Data Logging

    Get PDF
    Purpose: To compare listening ability (speech reception thresholds) and real-life listening experience in users with a percutaneous bone conduction device (BCD) with two listening programs differing only in high-frequency gain. In situ real-life experiences were recorded with ecological momentary assessment (EMA) techniques combined with real-time acoustical data logging and standard retrospective questionnaires. Methods: Nineteen experienced BCD users participated in this study. They all used a Ponto 4 BCD from Oticon Medical during a 4-week trial period. Environmental data and device parameters (i.e., device usage and volume control) were logged in real-time on an iPhone via a custom iOS research app. At the end of the trial period, subjects filled in APHAB, SSQ, and preference questionnaires. Listening abilities with the two programs were evaluated with speech reception threshold tests. Results: The APHAB and SSQ questionnaires did not reveal any differences between the two listening programs. The EMAs revealed group-level effects, indicating that in speech and noisy listening environments, subjects preferred the default listening program, and found the program with additional high-frequency gain too loud. This finding was corroborated by the volume log—subjects avoided the higher volume control setting and reacted more to changes in environmental sound pressure levels when using the high-frequency gain program. Finally, day-to-day changes in EMAs revealed acclimatization effects in the listening experience for ratings of “sound quality” and “program suitability” of the BCD, but not for ratings of “loudness perception” and “speech understanding”. The acclimatization effect did not differ among the listening programs. Conclusion: Adding custom high-frequency amplification to the BCD target-gain prescription improves speech reception in laboratory tests under quiet conditions, but results in poorer real-life listening experiences due to loudness

    Investigating Real-World Benefits of High-Frequency Gain in Bone-Anchored Users with Ecological Momentary Assessment and Real-Time Data Logging

    Get PDF
    Purpose: To compare listening ability (speech reception thresholds) and real-life listening experience in users with a percutaneous bone conduction device (BCD) with two listening programs differing only in high-frequency gain. In situ real-life experiences were recorded with ecological momentary assessment (EMA) techniques combined with real-time acoustical data logging and standard retrospective questionnaires. Methods: Nineteen experienced BCD users participated in this study. They all used a Ponto 4 BCD from Oticon Medical during a 4-week trial period. Environmental data and device parameters (i.e., device usage and volume control) were logged in real-time on an iPhone via a custom iOS research app. At the end of the trial period, subjects filled in APHAB, SSQ, and preference questionnaires. Listening abilities with the two programs were evaluated with speech reception threshold tests. Results: The APHAB and SSQ questionnaires did not reveal any differences between the two listening programs. The EMAs revealed group-level effects, indicating that in speech and noisy listening environments, subjects preferred the default listening program, and found the program with additional high-frequency gain too loud. This finding was corroborated by the volume log-subjects avoided the higher volume control setting and reacted more to changes in environmental sound pressure levels when using the high-frequency gain program. Finally, day-to-day changes in EMAs revealed acclimatization effects in the listening experience for ratings of "sound quality" and "program suitability" of the BCD, but not for ratings of "loudness perception" and "speech understanding". The acclimatization effect did not differ among the listening programs. Conclusion: Adding custom high-frequency amplification to the BCD target-gain prescription improves speech reception in laboratory tests under quiet conditions, but results in poorer real-life listening experiences due to loudness.</p

    Time-temperature superposition in viscous liquids

    Get PDF
    Dielectric relaxation measurements on supercooled triphenyl phosphite show that at low temperatures time-temperature superposition (TTS) is accurately obeyed for the primary (alpha) relaxation process. Measurements on 6 other molecular liquids close to the calorimetric glass transition indicate that TTS is linked to an ω1/2\omega^{-1/2} high-frequency decay of the alpha loss, while the loss peak width is nonuniversal.Comment: 4 page

    Prevalence and Mortality of Infective Endocarditis in Community-Acquired and Healthcare-Associated Staphylococcus aureus Bacteremia::A Danish Nationwide Registry-Based Cohort Study.

    Get PDF
    BACKGROUND: Staphylococcus aureus bacteremia (SAB) can be community-acquired or healthcare-associated, and prior small studies have suggested that this mode of acquisition impacts the subsequent prevalence of infective endocarditis (IE) and patient outcomes. METHODS: First-time SAB was identified from 2010 to 2018 using Danish nationwide registries and categorized into community-acquired (no healthcare contact within 30 days) or healthcare-associated (SAB >48 hours of hospital admission, hospitalization within 30 days, or outpatient hemodialysis). Prevalence of IE (defined from hospital codes) was compared between groups using multivariable adjusted logistic regression analysis. One-year mortality of S aureus IE (SAIE) was compared between groups using multivariable adjusted Cox proportional hazard analysis. RESULTS: We identified 5549 patients with community-acquired SAB and 7491 with healthcare-associated SAB. The prevalence of IE was 12.1% for community-acquired and 6.6% for healthcare-associated SAB. Community-acquired SAB was associated with a higher odds of IE as compared with healthcare-associated SAB (odds ratio, 2.12 [95% confidence interval {CI}, 1.86–2.41]). No difference in mortality was observed with 0–40 days of follow-up for community-acquired SAIE as compared with healthcare-associated SAIE (HR, 1.07 [95% CI, .83–1.37]), while with 41–365 days of follow-up, community-acquired SAIE was associated with a lower mortality (HR, 0.71 [95% CI, .53–.95]). CONCLUSIONS: Community-acquired SAB was associated with twice the odds for IE, as compared with healthcare-associated SAB. We identified no significant difference in short-term mortality between community-acquired and healthcare-associated SAIE. Beyond 40 days of survival, community-acquired SAIE was associated with a lower mortality

    A Mosaic of Functional Kainate Receptors in Hippocampal Interneurons

    Get PDF
    8 páginas, 7 figuras.Although some physiological functions of kainate receptors (KARs) still remain unclear, recent advances have highlighted a role in synaptic physiology. In hippocampal slices, kainate depresses GABA-mediated synaptic inhibition and increases the firing rate of interneurons. However, the sensitivity to agonists of these responses differs, suggesting that the presynaptic and somatic KARs have a distinct molecular composition. Hippocampal interneurons express several distinct KAR subunits that can assemble into heteromeric receptors with a variety of pharmacological properties and that, in principle, could fulfill different roles. To address which receptor types mediate each of the effects of kainate in interneurons, we used new compounds and mice deficient for specific KAR subunits. In a recombinant assay, 5-carboxyl-2,4-di-benzamido-benzoic acid (NS3763) acted exclusively on homomeric glutamate receptor subunit 5 (GluR5), whereas 3S,4aR,6S,8aR-6-((4-carboxyphenyl)methyl) 1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid (LY382884) antagonized homomeric GluR5 and any heteromeric combination containing GluR5 subunits. In hippocampal slices, LY382884, but not NS3763, was able to prevent kainate-induced depression of evoked IPSC. In contrast, neither prevented the concomitant increase in spontaneous IPSC frequency. The selectivity of these compounds was seen additionally in knock-out mice, such that they were inactive in GluR5-/- mice but completely effective in GluR6-/- mice. Our data indicate that in wild-type mice, CA1 interneurons express heteromeric GluR6 -KA2 receptors in their somatic compartments and GluR5-GluR6 or GluR5-KA2 at presynaptic terminals. However, functional compensation appears to take place in the null mutants, a new pharmacological profile emerging more compatible with the activity of homomeric receptors in both compartments: GluR5 in GluR6-/- mice and GluR6 in GluR5-/- mice.This work was supported by Ministerio de Ciencia y Tecnología Grant BFI2003-00161 (J.L.) and European Union Grant QLG3-CT2001-00929. A.V.P. is a postdoctoral fellow of the Autonomous Community of Madrid.Peer reviewe

    Unraveling the mechanism of action of NS9283, a positive allosteric modulator of (a4)<sub>3</sub>(ß2)<sub>2</sub> nicotinic ACh receptors

    No full text
    BACKGROUND AND PURPOSE: Strong implications in major neurological diseases make the neuronal α4β2 nicotinic ACh receptor (nAChR) a highly interesting drug target. In this study, we present a detailed electrophysiological characterization of NS9283, a potent positive allosteric modulator acting selectively at 3α:2β stoichiometry of α2* and α4* nAChRs. EXPERIMENTAL APPROACH: The whole-cell patch-clamp technique equipped with an ultra-fast drug application system was used to perform electrophysiological characterization of NS9283 modulatory actions on human α4β2 nAChRs stably expressed in HEK293 cells (HEK293-hα4β2). KEY RESULTS: NS9283 was demonstrated to increase the potency of ACh-evoked currents in HEK293-hα4β2 cells by left-shifting the concentration–response curve ∼60-fold. Interestingly, this modulation did not significantly alter maximal efficacy levels of ACh. Further, NS9283 did not affect the rate of desensitization of ACh-evoked currents, was incapable of reactivating desensitized receptors and only moderately slowed recovery from desensitization. However, NS9283 strongly decreased the rate of deactivation kinetics and also modestly decreased the rate of activation. This resulted in a left-shift of the ACh window current of (α4)(3)(β2)(2) nAChRs in the presence of NS9283. CONCLUSIONS AND IMPLICATIONS: This study demonstrates that NS9283 increases responsiveness of human (α4)(3)(β2)(2) nAChR to ACh with no change in maximum efficacy. We propose that this potentiation is due to a significant slowing of deactivation kinetics. In summary, the mechanism of action of NS9283 bears high resemblance to that of benzodiazepines at the GABA(A) receptor and to our knowledge, NS9283 constitutes the first nAChR compound of this class
    corecore