1,201 research outputs found

    ERBlox: Combining Matching Dependencies with Machine Learning for Entity Resolution

    Full text link
    Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called matching dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating three components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built using machine learning (ML) techniques, (b) MDs for supporting both the blocking phase of ML and the merge itself; and (c) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for data processing, and the specification and enforcement of MDs.Comment: To appear in Proc. SUM, 201

    Charge injection instability in perfect insulators

    Full text link
    We show that in a macroscopic perfect insulator, charge injection at a field-enhancing defect is associated with an instability of the insulating state or with bistability of the insulating and the charged state. The effect of a nonlinear carrier mobility is emphasized. The formation of the charged state is governed by two different processes with clearly separated time scales. First, due to a fast growth of a charge-injection mode, a localized charge cloud forms near the injecting defect (or contact). Charge injection stops when the field enhancement is screened below criticality. Secondly, the charge slowly redistributes in the bulk. The linear instability mechanism and the final charged steady state are discussed for a simple model and for cylindrical and spherical geometries. The theory explains an experimentally observed increase of the critical electric field with decreasing size of the injecting contact. Numerical results are presented for dc and ac biased insulators.Comment: Revtex, 7pages, 4 ps figure

    Current percolation and anisotropy in polycrystalline MgB2_2

    Full text link
    The influence of anisotropy on the transport current in MgB2_2 polycrystalline bulk samples and wires is discussed. A model for the critical current density is proposed, which is based on anisotropic London theory, grain boundary pinning and percolation theory. The calculated currents agree convincingly with experimental data and the fit parameters, especially the anisotropy, obtained from percolation theory agree with experiment or theoretical predictions.Comment: 5 pages, accepted for publication in Physical Review Letters (http://prl.aps.org/

    Partial Densities of States, Scattering Matrices, and Green's Functions

    Full text link
    The response of an arbitrary scattering problem to quasi-static perturbations in the scattering potential is naturally expressed in terms of a set of local partial densities of states and a set of sensitivities each associated with one element of the scattering matrix. We define the local partial densities of states and the sensitivities in terms of functional derivatives of the scattering matrix and discuss their relation to the Green's function. Certain combinations of the local partial densities of states represent the injectivity of a scattering channel into the system and the emissivity into a scattering channel. It is shown that the injectivities and emissivities are simply related to the absolute square of the scattering wave-function. We discuss also the connection of the partial densities of states and the sensitivities to characteristic times. We apply these concepts to a delta-barrier and to the local Larmor clock.Comment: 13 pages (revtex), 4 figure

    Phase transition close to room temperature in BiFeO3 thin films

    Full text link
    BiFeO3 (BFO) multiferroic oxide has a complex phase diagram that can be mapped by appropriately substrate-induced strain in epitaxial films. By using Raman spectroscopy, we conclusively show that films of the so-called supertetragonal T-BFO phase, stabilized under compressive strain, displays a reversible temperature-induced phase transition at about 100\circ, thus close to room temperature.Comment: accepted in J. Phys.: Condens. Matter (Fast Track Communication

    Nonlinearity in NS transport: scattering matrix approach

    Full text link
    A general formula for the current through a disordered normal--superconducting junction is derived, which is valid at finite temperature and includes the full voltage dependence. The result depends on a multichannel scattering matrix, which describes elastic scattering in the normal region, and accounts for the Andreev scattering at the NS interface. The symmetry of the current with respect to sign reversal in the subgap regime is discussed. The Andreev approximation is used to derive a spectral conductance formula, which applies to voltages both below and above the gap. In a case study the spectral conductance formula is applied to the problem of an NINIS double barrier junction.Comment: 26 pages, 4 Postscript figures, Latex, to be published in Phys. Rev.

    Electric Field Effect in Ultrathin Films near the Superconductor-Insulator Transition

    Full text link
    The effect of an electric field on the conductance of ultrathin films of metals deposited on substrates coated with a thin layer of amorphous Ge was investigated. A contribution to the conductance modulation symmetric with respect to the polarity of the applied electric field was found in regimes in which there was no sign of glassy behavior. For films with thicknesses that put them on the insulating side of the superconductor-insulator transition, the conductance increased with electric field, whereas for films that were becoming superconducting it decreased. Application of magnetic fields to the latter, which reduce the transition temperature and ultimately quench superconductivity, changed the sign of the reponse of the conductance to electric field back to that found for insulators. We propose that this symmetric response to capacitive charging is a consequence of changes in the conductance of the a-Ge layer, and is not a fundamental property of the physics of the superconductor-insulator transition as previously suggested.Comment: 4 pages text, 4 figure

    Scattering Theory of Photon-Assisted Electron Transport

    Full text link
    The scattering matrix approach to phase-coherent transport is generalized to nonlinear ac-transport. In photon-assisted electron transport it is often only the dc-component of the current that is of experimental interest. But ac-currents at all frequencies exist independently of whether they are measured or not. We present a theory of photon-assisted electron transport which is charge and current conserving for all Fourier components of the current. We find that the photo-current can be considered as an up- and down-conversion of the harmonic potentials associated with the displacement currents. As an example explicit calculations are presented for a resonant double barrier coupled to two reservoirs and capacitively coupled to a gate. Two experimental situations are considered: in the first case the ac-field is applied via a gate, and in the second case one of the contact potentials is modulated. For the first case we show that the relative weight of the conduction sidebands varies with the screening properties of the system. In contrast to the non-interacting case the relative weights are not determined by Bessel functions. Moreover, interactions can give rise to an asymmetry between absorption and emission peaks. In the contact driven case, the theory predicts a zero-bias current proportional to the asymmetry of the double barrier. This is in contrast to the discussion of Tien and Gordon which, in violation of basic symmetry principles, predicts a zero-bias current also for a symmetric double barrier.Comment: 15 pages, 6 figures, REVTE
    corecore