106 research outputs found

    Genomic Nucleotide Sequence of a Proteinase Inhibitor II Gene

    Full text link

    A Plant Chloroplast Glutamyl Proteinase

    Full text link

    Isolation of a cDNA for Proteinase Inhibitor I

    Full text link

    Plants under Climatic Stress

    Full text link

    Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive <i>Helicoverpa</i> pest species

    Get PDF
    BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant

    Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mosquitoes of the <it>Anopheles gambiae </it>species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect <it>Plasmodium </it>development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution.</p> <p>Methods</p> <p>Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the <it>An. gambiae </it>species complex in both East and West Africa.</p> <p>Results</p> <p>Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes.</p> <p>Conclusion</p> <p>It is well known that phylogenetic and population history in the <it>An. gambiae </it>complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the <it>An. gambiae </it>genome are discussed.</p
    corecore