102 research outputs found
Comparison of the Host Ranges and Antigenicity of Cryptosporidium parvum and Cryptosporidium wrairi from Guinea Pigs
Oocysts of a Cryptosporidium isolate from guinea pigs were not infectious for adult mice, but were infectious for two of three newborn calves and for suckling mice. However, oocysts isolated from calves or mice infected with guinea pig Cryptosporidium were not infectious for guinea pigs. Four isolates of C. parvum from calves were incapable of infecting weanling guinea pigs. Microscopic examination of tissue from the colon and cecum of suckling guinea pigs inoculated with C. parvum revealed sparse infection of some pups. These host range studies and previously described differences in 125 I-labeled oocyst surface protein profiles between Cryptosporidium sp. from guinea pigs and C. parvum suggest they are distinct species. We propose the name Cryptosporidium wrairi be retained. Studies with monoclonal antibodies indicate that C. wrairi and C. parvum are antigenically related.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75184/1/j.1550-7408.1992.tb01471.x.pd
Recognition and diagnosis of sleep disorders in Parkinson's disease
Contains fulltext :
109296.pdf (publisher's version ) (Open Access)Sleep disturbances are among the most frequent and incapacitating non-motor symptoms of Parkinson's disease (PD), and are increasingly recognized as an important determinant of impaired quality of life. Here we review several recent developments regarding the recognition and diagnosis of sleep disorders in PD. In addition, we provide a practical and easily applicable approach to the diagnostic process as a basis for tailored therapeutic interventions. This includes a stepwise scheme that guides the clinical interview and subsequent ancillary investigations. In this scheme, the various possible sleep disorders are arranged not in order of prevalence, but in a 'differential diagnostic' order. We also provide recommendations for the use of sleep registrations such as polysomnography. Furthermore, we point out when a sleep specialist could be consulted to provide additional diagnostic and therapeutic input. This structured approach facilitates early detection of sleep disturbances in PD, so treatment can be initiated promptly
Recommended from our members
Status of the "ARC", a Quad of High-Intensity Beam Lines at the National Ignition Facility
We present the status of plans to commission a short-pulse, quad of beams on the National Ignition Facility (NIF), capable of generating > 10 kJ of energy in 10 ps. These beams will initially provide an advanced radiographic capability (ARC) to generate brilliant, x-ray back-lighters for diagnosing fuel density and symmetry during ignition experiments. A fiber, mode-locked oscillator generates the seed pulse for the ARC beam line in the NIF master oscillator room (MOR). The 200 fs, 1053 nm oscillator pulse is amplified and stretched in time using a chirped-fiber-Bragg grating. The stretched pulse is split to follow two separate beam paths through the chain. Each pulse goes to separate pulse tweakers where the dispersion can be adjusted to generate a range of pulse widths and delays at the compressor output. After further fiber amplification the two pulses are transported to the NIF preamplifier area and spatially combined using shaping masks to form a split-spatial-beam profile that fits in a single NIF aperture. This split beam propagates through a typical NIF chain where the energy is amplified to several kilojoules. A series of mirrors directs the amplified, split beam to a folded grating compressor that is located near the equator of the NIF target chamber. Figure 1 shows a layout of the beam transport and folded compressor, showing the split beam spatial profile. The folder compressor contains four pairs of large, multi-layer-dielectric gratings; each grating in a pair accepts half of the split beam. The compressed output pulse can be 0.7-50 ps in duration, depending on the setting of the pulse tweaker in the MOR. The compressor output is directed to target chamber center using four additional mirrors that include a 9 meter, off-axis parabola. The final optic, immediately following the parabola, is a pair of independently adjustable mirrors that can direct the pair of ARC beams to individual x-ray backlighter targets. The first mirror after the compressor leaks a small fraction of the light that is transported to a diagnostics station where detailed measurements of the spatial and temporal characteristics of the ARC pulse will be recorded for each shot. A NIF quad of short-pulse beams will support up to eight, independently-timed, short-pulse beams, capable of producing an x-ray motion picture. Alternatively, the combined aperture of the quad can direct > 10 kJ of energy in 10 psec onto a single target, enabling research into fast ignition and high-energy-density science on the NIF. We will discuss modifications to the NIF to accommodate ARC, including features such as simultaneous NIF-ARC operation in the same NIF quad, protection against backward propagating pulses from the target and plans to coherently add split beams
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- …