27 research outputs found
Low-surface energy surfactants with branched hydrocarbon architectures
International audienceSurface tensiometry and small-angle neutron scattering have been used to characterize a new class of low-surface energy surfactants (LSESs), "hedgehog" surfactants. These surfactants are based on highly branched hydrocarbon (HC) chains as replacements for environmentally hazardous fluorocarbon surfactants and polymers. Tensiometric analyses indicate that a subtle structural modification in the tails and headgroup results in significant effects on limiting surface tensions γcmc at the critical micelle concentration: a higher level of branching and an increased counterion size promote an effective reduction of surface tension to low values for HC surfactants (γcmc 24 mN m-1). These LSESs present a new class of potentially very important materials, which form lamellar aggregates in aqueous solutions independent of dilution
Clinical and organizational factors associated with mortality during the peak of first COVID-19 wave: the global UNITE-COVID study
Purpose: To accommodate the unprecedented number of critically ill patients with pneumonia caused by coronavirus disease 2019 (COVID-19) expansion of the capacity of intensive care unit (ICU) to clinical areas not previously used for critical care was necessary. We describe the global burden of COVID-19 admissions and the clinical and organizational characteristics associated with outcomes in critically ill COVID-19 patients. Methods: Multicenter, international, point prevalence study, including adult patients with SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) and a diagnosis of COVID-19 admitted to ICU between February 15th and May 15th, 2020. Results: 4994 patients from 280 ICUs in 46 countries were included. Included ICUs increased their total capacity from 4931 to 7630 beds, deploying personnel from other areas. Overall, 1986 (39.8%) patients were admitted to surge capacity beds. Invasive ventilation at admission was present in 2325 (46.5%) patients and was required during ICU stay in 85.8% of patients. 60-day mortality was 33.9% (IQR across units: 20%–50%) and ICU mortality 32.7%. Older age, invasive mechanical ventilation, and acute kidney injury (AKI) were associated with increased mortality. These associations were also confirmed specifically in mechanically ventilated patients. Admission to surge capacity beds was not associated with mortality, even after controlling for other factors. Conclusions: ICUs responded to the increase in COVID-19 patients by increasing bed availability and staff, admitting up to 40% of patients in surge capacity beds. Although mortality in this population was high, admission to a surge capacity bed was not associated with increased mortality. Older age, invasive mechanical ventilation, and AKI were identified as the strongest predictors of mortality
Co-infection and ICU-acquired infection in COIVD-19 ICU patients: a secondary analysis of the UNITE-COVID data set
Background: The COVID-19 pandemic presented major challenges for critical care facilities worldwide. Infections which develop alongside or subsequent to viral pneumonitis are a challenge under sporadic and pandemic conditions; however, data have suggested that patterns of these differ between COVID-19 and other viral pneumonitides. This secondary analysis aimed to explore patterns of co-infection and intensive care unit-acquired infections (ICU-AI) and the relationship to use of corticosteroids in a large, international cohort of critically ill COVID-19 patients.Methods: This is a multicenter, international, observational study, including adult patients with PCR-confirmed COVID-19 diagnosis admitted to ICUs at the peak of wave one of COVID-19 (February 15th to May 15th, 2020). Data collected included investigator-assessed co-infection at ICU admission, infection acquired in ICU, infection with multi-drug resistant organisms (MDRO) and antibiotic use. Frequencies were compared by Pearson's Chi-squared and continuous variables by Mann-Whitney U test. Propensity score matching for variables associated with ICU-acquired infection was undertaken using R library MatchIT using the "full" matching method.Results: Data were available from 4994 patients. Bacterial co-infection at admission was detected in 716 patients (14%), whilst 85% of patients received antibiotics at that stage. ICU-AI developed in 2715 (54%). The most common ICU-AI was bacterial pneumonia (44% of infections), whilst 9% of patients developed fungal pneumonia; 25% of infections involved MDRO. Patients developing infections in ICU had greater antimicrobial exposure than those without such infections. Incident density (ICU-AI per 1000 ICU days) was in considerable excess of reports from pre-pandemic surveillance. Corticosteroid use was heterogenous between ICUs. In univariate analysis, 58% of patients receiving corticosteroids and 43% of those not receiving steroids developed ICU-AI. Adjusting for potential confounders in the propensity-matched cohort, 71% of patients receiving corticosteroids developed ICU-AI vs 52% of those not receiving corticosteroids. Duration of corticosteroid therapy was also associated with development of ICU-AI and infection with an MDRO.Conclusions: In patients with severe COVID-19 in the first wave, co-infection at admission to ICU was relatively rare but antibiotic use was in substantial excess to that indication. ICU-AI were common and were significantly associated with use of corticosteroids
Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study
Background
Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave.
Methods
This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs.
Results
Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates.
Conclusions
Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility.
Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)
Acid and base catalyzed proton exchange rates of N-methylacetamide in water and in dimethyl sulphoxide
Revised values are proposed for acid and base catalyzed proton exchange rate constants at nitrogen of N-methylacetamide (NMA), kH = (4.70 ± 0.11) × 102 and kOH = (1.56 ± 0.03) × 106M–1s–1 in water at 25°C. These values are critically compared to other data from the literature. In DMSO, the acide catalyzed hydrogen exchange takes place at about the same rate as in water, kH = (4.36 ± 0.57) × 102M–1s–1. Amide hydrogen abstraction in basic DMSO involves the conjugate anion of NMA (rate constant kB = (2.13 ± 0.30) × 109M–1s–1 instead of the conjugate base of the solvent as in water. pK values of O-protonation (pXNH) of NMA are measured or estimated, pK0 = – 0.30 and – 0.45 ; pKN = – 7.0 and – 6.75 ; pKNH = 17.8 and 23.4, in H2O and in DMSO, respectively
Acid and base catalyzed proton exchange on model oligopeptides in dimethyl sulphoxide
Proton exchanges from and to nitrogen on doubly protected model peptides in anhydrous DMSO at 25°C are catalyzed either by the solvated hydrogen ion or the conjugate base of the peptide, in acidic ((pH ~ 0) or basic (pH ~ 15) conditions respectively. Both types of exchange (protonation and deprotonation) are dependent upon the acidity of the peptide bond (towards deprotonation), following Broensted type log k-pK. relationships. The stereochemistry of neighboring groups may be of importance, as clearly shown by the comparison of cis and trans N-acetylsarcosylglycyl octyl ester
Traitements systémiques émergents de la dermatite atopique [Emerging systemic treatments of atopic dermatitis]
Atopic dermatitis (AD) is the most common inflammatory dermatitis for which molecular research is currently extending. Mostly mediated by helper T lymphocytes type 2 (Th2), it seems that Th22 and Th17 can also be involved on a smaller scale. An IL-4/IL-13 inhibitor, key cytokines of the Th2 pathway, has recently been recognized as a new treatment for AD and has opened the field to multiple clinical trials for other selective immunosuppressants such as biologics and small molecules. These advances make us hope for the development of more effective and better-tolerated treatments than conventional immunosuppressants. In addition, they promise to advance the knowledge of this complex inflammatory pathology and its clinical subtypes
Impact of the introduction of a nucleic acid amplification test for Clostridium difficile diagnosis on stool rejection policies
Background The change from non-molecular to nucleic acid amplification tests (NAATs) is known to increase the detection of Clostridium difficile infection (CDI); however, the impact on stool rejection policies in clinical laboratories is unclear. The current guidelines have reinforced the importance of respecting strict conditions for performing tests on stool samples for CDI diagnosis. The purpose of this study was to estimate whether the implementation of molecular tests has resulted in changes in stool rejection policies between clinical laboratories that introduced NAATs and those that did not.[br/]
Results A survey was conducted to evaluate the change in the number of stool samples rejected and the rejection criteria among 12 hospital laboratories in southwestern France before and after the switch from non-molecular tests to NAATs using retrospective data from June 1 till September 30, 2013 and the same period 2014. Four laboratories introduced NAATs as a second or third step in the process. A total of 1378 and 1297 stools samples were collected in 2013 and 2014, respectively. The mean number of rejected stool samples significantly increased (p < 0.001, Chi square test), with a total of 99 (7.1%) and 147 (11.3%) specimens rejected in 2013 and 2014, respectively. Notably, these laboratories had more stringent criteria and were no longer testing the stool samples of patients with CDI-positive results within 7 days. In contrast, there was a significant decrease in the rate of rejected stool samples (p < 0.001, Chi square test) in the five laboratories that did not adopt NAATs and a less stringent stool rejection policy.[br/]
Conclusion Nucleic acid amplification test implementation improved compliance with recommended stool rejection policies. Laboratories should follow the recommended laboratory algorithm for the CDI diagnosis combined with the correct stool rejection policy