15 research outputs found

    A Molecular Matter-Wave Amplifier

    Full text link
    We describe a matter-wave amplifier for vibrational ground state molecules, which uses a Feshbach resonance to first form quasi-bound molecules starting from an atomic Bose-Einstein condensate. The quasi-bound molecules are then driven into their stable vibrational ground state via a two-photon Raman transition inside an optical cavity. The transition from the quasi-bound state to the electronically excited state is driven by a classical field. Amplification of ground state molecules is then achieved by using a strongly damped cavity mode for the transition from the electronically excited molecules to the molecular ground state

    Optimal conversion of Bose condensed atoms into molecules via a Feshbach resonance

    Full text link
    In many experiments involving conversion of quantum degenerate atomic gases into molecular dimers via a Feshbach resonance, an external magnetic field is linearly swept from above the resonance to below resonance. In the adiabatic limit, the fraction of atoms converted into molecules is independent of the functional form of the sweep and is predicted to be 100%. However, for non-adiabatic sweeps through resonance, Landau-Zener theory predicts that a linear sweep will result in a negligible production of molecules. Here we employ a genetic algorithm to determine the functional time dependence of the magnetic field that produces the maximum number of molecules for sweep times that are comparable to the period of resonant atom-molecule oscillations, 2πΩRabi−12\pi\Omega_{Rabi}^{-1}. The optimal sweep through resonance indicates that more than 95% of the atoms can be converted into molecules for sweep times as short as 2πΩRabi−12\pi\Omega_{Rabi}^{-1} while the linear sweep results in a conversion of only a few percent. We also find that the qualitative form of the optimal sweep is independent of the strength of the two-body interactions between atoms and molecules and the width of the resonance

    A Molecular Micromaser

    Full text link
    We show that photoassociation of fermionic atoms into bosonic molecules inside an optical lattice can be described using a Jaynes-Cummings Hamiltonian with a nonlinear detuning. Using this equivalence to the Jaynes-Cummings dynamics, we show how one can construct a micromaser for the molecular field in each lattice site

    Phase Conjugation of a Quantum-Degenerate Atomic Fermi Beam

    Full text link
    We discuss the possibility of phase-conjugation of an atomic Fermi field via nonlinear wave mixing in an ultracold gas. It is shown that for a beam of fermions incident on an atomic phase-conjugate mirror, a time reversed backward propagating fermionic beam is generated similar to the case in nonlinear optics. By adopting an operational definition of the phase, we show that it is possible to infer the presence of the phase-conjugate field by the loss of the interference pattern in an atomic interferometer

    Spin current and shot noise from a quantum dot coupled to a quantized cavity field

    Full text link
    We examine the spin current and the associated shot noise generated in a quantum dot connected to normal leads with zero bias voltage across the dot. The spin current is generated by spin flip transitions induced by a quantized electromagnetic field inside a cavity with one of the Zeeman states lying below the Fermi level of the leads and the other above. In the limit of strong Coulomb blockade, this model is analogous to the Jaynes-Cummings model in quantum optics. We also calculate the photon current and photon current shot noise resulting from photons leaking out of the cavity. We show that the photon current is equal to the spin current and that the spin current can be significantly larger than for the case of a classical driving field as a result of cavity losses. In addition to this, the frequency dependent spin (photon) current shot noise show dips (peaks) that are a result of the discrete nature of photons

    Quantum bistability and spin current shot noise of a single quantum dot coupled to an optical microcavity

    Full text link
    Here we explore spin dependent quantum transport through a single quantum dot coupled to an optical microcavity. The spin current is generated by electron tunneling between a single doped reservoir and the dot combined with intradot spin flip transitions induced by a quantized cavity mode. In the limit of strong Coulomb blockade, this model is analogous to the Jaynes-Cummings model in quantum optics and generates a pure spin current in the absence of any charge current. Earlier research has shown that in the classical limit where a large number of such dots interact with the cavity field, the spin current exhibits bistability as a function of the laser amplitude that drives the cavity. We show that in the limit of a single quantum dot this bistability continues to be present in the intracavity photon statistics. Signatures of the bistable photon statistics manifest themselves in the frequency dependent shot noise of the spin current despite the fact that the quantum mechanical average spin current no longer exhibits bistability. Besides having significance for future quantum dot based optoelectronic devices, our results shed light on the relation between bistability, which is traditionally viewed as a classical effect, and quantum mechanics

    Feshbach-resonance-induced atomic filamentation and quantum pair correlation in atom-laser-beam propagation

    Full text link
    We study the propagation of an atom laser beam through a spatial region with a magnetic field tuned to a Feshbach resonance. Tuning the magnetic field below the resonance produces an effective focusing Kerr medium that causes a modulational instability of the atomic beam. Under appropriate circumstances, this results in beam breakup and filamentation seeded by quasi-particle fluctuations, and in the generation of correlated atomic pairs

    Noise limits in matter-wave interferometry using degenerate quantum gases

    Full text link
    We analyze the phase resolution limit of a Mach-Zehnder atom interferometer whose input consists of degenerate quantum gases of either bosons or fermions. For degenerate gases, the number of atoms within one de Broglie wavelength is larger than unity, so that atom-atom interactions and quantum statistics are no longer negligible. We show that for equal atom numbers, the phase resolution achievable with fermions is noticeably better than for interacting bosons.Comment: 4 pages, 5 figure

    Two-fermion bound state in a Bose-Einstein condensate

    Full text link
    A nonlinear Schr\"odinger equation is derived for the dynamics of a beam of ultracold fermionic atoms traversing a Bose-Einstein condensate. The condensate phonon modes are shown to provide a nonlinear medium for the fermionic atoms. A two-fermion bound state is predicted to arise, and the signature of the bound state in a nonlinear atom optics experiment is discussed.Comment: 4 pages, 1 figure
    corecore