We describe a matter-wave amplifier for vibrational ground state molecules,
which uses a Feshbach resonance to first form quasi-bound molecules starting
from an atomic Bose-Einstein condensate. The quasi-bound molecules are then
driven into their stable vibrational ground state via a two-photon Raman
transition inside an optical cavity. The transition from the quasi-bound state
to the electronically excited state is driven by a classical field.
Amplification of ground state molecules is then achieved by using a strongly
damped cavity mode for the transition from the electronically excited molecules
to the molecular ground state