186 research outputs found

    A wide dispersion in star formation rate and dynamical mass of 10^8 solar mass black hole host galaxies at redshift 6

    Full text link
    ALMA [CII] line and continuum observations of five redshift z>6 quasars are presented. This sample was selected to probe lower black hole mass quasars than most previous studies. We find a wide dispersion in properties with CFHQS J0216-0455, a low-luminosity quasar with absolute magnitude M_1450=-22.2, remaining undetected implying a limit on the star formation rate in the host galaxy of <10 solar masses per year, whereas other host galaxies have star formation rates up to hundreds of solar masses per year. Two other quasars have particularly interesting properties. VIMOS2911 is one of the least luminous z>6 quasars known with M_1450=-23.1, yet its host galaxy is experiencing a very powerful starburst. PSO J167-13 has a broad and luminous [CII] line and a neighbouring galaxy a projected distance of 5kpc away that is also detected in the [CII] line and continuum. Combining with similar observations from the literature, we study the ratio of [CII] line to far-infrared luminosity finding this ratio increases at high-redshift at a fixed far-infrared luminosity, likely due to lower dust content, lower metallicity and/or higher gas masses. We compile a sample of 21 high-redshift quasars with dynamical masses and investigate the relationship between black hole mass and dynamical mass. The new observations presented here reveal dynamical masses consistent with the relationship defined by local galaxies. However, the full sample shows a very wide scatter across the black hole mass - dynamical mass plane, whereas both the local relationship and simulations of high-redshift quasars show a much lower dispersion in dynamical mass.Comment: 10 pages, 11 figures, ApJ in pres

    No evidence of "gray" dust from composite quasar spectra

    Full text link
    Two recent studies based on composite reddened quasar spectra have indicated the presence of `gray' dust in quasar environments. This gray dust has a relatively flat extinction law in the UV, consistent with the theoretical expectation of a lack of small dust grains close to a quasar. In contrast, individual reddened quasars in the Sloan Digital Sky Survey tend to have steep extinction laws in the UV, similar to that in the SMC. We analyze the method used in determining extinction laws from composite quasar spectra in order to resolve this discrepancy. We show that quasars reddened by SMC-type dust that are present in quasar samples have a negative correlation between E_{B-V} and redshift, due to selection effects. The fact that the highest redshift quasars (which contribute to the UV part of a composite spectrum) are less extincted leads to shallower extinction in the UV. We construct a composite quasar spectrum from a simulated sample of quasars reddened by SMC-type dust and show that the extinction curve derived from the composite does not recover the intrinsic extinction law. We conclude there is no evidence of gray dust in quasar environments.Comment: 4 pages, 2 figures, ApJL, in press. Minor typos corrected, title and some text Americanize

    Star formation rate and dynamical mass of 10^8 solar mass black hole host galaxies at redshift 6

    Full text link
    We present ALMA observations of two moderate luminosity quasars at redshift 6. These quasars from the Canada-France High-z Quasar Survey (CFHQS) have black hole masses of ~10^8 M_solar. Both quasars are detected in the [CII] line and dust continuum. Combining these data with our previous study of two similar CFHQS quasars we investigate the population properties. We show that z>6 quasars have a significantly lower far-infrared luminosity than bolometric-luminosity-matched samples at lower redshift, inferring a lower star formation rate, possibly correlated with the lower black hole masses at z=6. The ratios of [CII] to far-infrared luminosities in the CFHQS quasars are comparable with those of starbursts of similar star formation rate in the local universe. We determine values of velocity dispersion and dynamical mass for the quasar host galaxies based on the [CII] data. We find that there is no significant offset from the relations defined by nearby galaxies with similar black hole masses. There is however a marked increase in the scatter at z=6, beyond the large observational uncertainties.Comment: 10 pages, 7 figures, accepted for publication in Ap

    Star formation and the interstellar medium in z>6 UV-luminous Lyman-break galaxies

    Full text link
    We present Atacama Large Millimeter Array (ALMA) detections of atomic carbon line and dust continuum emission in two UV-luminous galaxies at redshift 6. The far-infrared (FIR) luminosities of these galaxies are substantially lower than similar starbursts at later cosmic epochs, indicating an evolution in the dust properties with redshift, in agreement with the evolution seen in ultraviolet (UV) attenuation by dust. The [CII] to FIR ratios are found to be higher than at low redshift showing that [CII] should be readily detectable by ALMA within the reionization epoch. One of the two galaxies shows a complex merger nature with the less massive component dominating the UV emission and the more massive component dominating the FIR line and continuum. Using the interstellar atomic carbon line to derive the systemic redshifts we investigate the velocity of Lyman alpha emission emerging from high-z galaxies. In contrast to previous work, we find no evidence for decreasing Lyman alpha velocity shifts at high-redshift. We observe an increase in velocity shifts from z\sim2 to z\sim6, consistent with the effects of increased IGM absorption.Comment: 10 pages, 9 figures, submitted to ApJ, revised after referees comment

    Redshift 6.4 host galaxies of 10^8 solar mass black holes: low star formation rate and dynamical mass

    Full text link
    We present ALMA observations of rest-frame far-infrared continuum and [CII] line emission in two z=6.4 quasars with black hole masses of ~10^8 M_sun. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120+/-35 microJy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M_sun/yr, considerably below the typical value at all redshifts for this bolometric luminosity. By comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [CII] emission is also detected only in J0210-0456. The ratio of [CII] to far-infrared luminosity is similar to that of low redshift galaxies of comparable luminosity, suggesting the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low- and high-redshift may be partially due to a selection effect from the limited sensitivity of previous observations. The [CII] line of J0210-0456 is relatively narrow (FWHM=189+/-18 km/s), indicating a dynamical mass substantially lower than expected from the local black hole - velocity dispersion correlation. The [CII] line is marginally resolved at 0.7" resolution with the blue and red wings spatially offset by 0.5" (3 kpc) and a smooth velocity gradient of 100 km/s across a scale of 6 kpc, possibly due to rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.Comment: 8 pages, 7 figures, ApJ in press, replaced with final versio

    Extremely red galaxy counterparts to 7C radio sources

    Get PDF
    We present RIJHK imaging of seven radio galaxies from the 7C Redshift Survey (7CRS) which lack strong emission lines and we use these data to investigate their spectral energy distributions (SEDs) with models which constrain their redshifts. Six of these seven galaxies have extremely red colours (R-K>5.5) and we find that almost all of them lie in the redshift range 1<z<2. We also present near-infrared spectroscopy of these galaxies which demonstrate that their SEDs are not dominated by emission lines, although tentative lines, consistent with H-alpha at z=1.45 and z=1.61, are found in two objects. Although the red colours of the 7CRS galaxies can formally be explained by stellar populations which are either very old or young and heavily reddened, independent evidence favours the former hypothesis. At z~1.5 at least 1/4 of powerful radio jets are triggered in massive (>L*) galaxies which formed the bulk of their stars several Gyr earlier, that is at epochs corresponding to redshifts z>5. If a similar fraction of all z~1.5 radio galaxies are old, then extrapolation of the radio luminosity function shows that, depending on the radio source lifetimes, between 10-100% of the near-IR selected extremely red object (ERO) population undergo a radio outburst at epochs corresponding to 1<z<2. An ERO found serendipitously in the field of one of the 7CRS radio sources appears to be a radio-quiet analogue of the 7CRS EROs with an emission line likely to be [OII] at z=1.20. The implication is that some of the most massive elliptical galaxies formed the bulk of their stars at z>5 and these objects probably undergo at least two periods of AGN activity: one at high redshift during which the black hole forms and another one at an epoch corresponding to z~1.5.Comment: 20 pages, 10 figures, accepted for publication in MNRA

    The Nature and Evolution of Classical Double Radio Sources from Complete Samples

    Get PDF
    We present a study of the trends in luminosity, linear size, spectral index, and redshift of classical double radio sources from three complete samples selected at successively fainter low radio-frequency flux-limits. We have been able to decouple the effects of the tight correlation between redshift and luminosity (inherent in any single flux-limited sample) which have hitherto hindered interpretation of the relationships between these four source properties. The major trends found are that (i) spectral indices increase with linear size, (ii) rest-frame spectral indices have a stronger dependence on luminosity than on redshift except at high (GHz) frequencies, and that (iii) the linear sizes are smaller at higher redshifts. We reproduce the observed dependences in a model for radio sources (born throughout cosmic time according to a radio-source birth function) whose lobes are fed with a synchrotron-emitting population (whose energy distribution is governed by compact hotspots), and which suffer inverse Compton, synchrotron and adiabatic expansion losses. In simulating the basic observed dependences, we find that there is no need to invoke any systematic change in the environments of these objects with redshift if the consequences of imposing a survey flux-limit on our simulated datasets are properly included in the model. We present evidence that for a radio survey there is an unavoidable `youth--redshift degeneracy', even though radio sources are short-lived relative to the age of the Universe; it is imperative to take this into account in studies which seemingly reveal correlations of source properties with redshift such as the `alignment effect'.Comment: 48 pages, 19 figures, uses aas2pp4.sty. To appear in AJ. Also available at http://www-astro.physics.ox.ac.uk/~kmb References updated and minor typos correcte

    Implications for unified schemes from submillimetre and far-infrared follow-up of radio-selected samples

    Full text link
    We extend our previous analysis which used generalized luminosity functions (GLFs) to predict the number of quasars and galaxies in low-radio-frequency-selected samples as a function of redshift, radio luminosity, narrow-emission-line luminosity and type of unified scheme. Our extended analysis incorporates the observed submillimetre (850 micron) flux densities of radio sources, employs a new method which allows us to deal with non detections, and focuses on the high-luminosity population. First, we conclude that the submillimetre luminosity L_{850} of low-frequency-selected radio sources is correlated with the bolometric luminosity L_{Bol} of their quasar nuclei via an approximate scaling relation L_{850} \propto L_{Bol}^{0.7 \pm 0.2}. Second, we conclude that there is quantitative evidence for a receding-torus-like physical process for the high-luminosity population within a two-population unified scheme for radio sources; this evidence comes from the fact that radio quasars are brighter in both narrow emission lines and submillimetre luminosity than radio galaxies matched in radio luminosity and redshift. Third, we note that the combination of a receding-torus-like scheme and the assumption that the observed submillimetre emission is dominated by quasar-heated dust yields a scaling relation L_{850} \propto L_{Bol}^{0.5} which is within the errors of that determined here for radio-selected quasars, and consistent with that inferred for radio-quiet quasars by Willott, Rawlings & Grimes (2003).Comment: 13 pages (including an appendix), 5 figures, to appear in MNRA

    The emission line - radio correlation for radio sources using the 7C Redshift Survey

    Get PDF
    We have used narrow emission line data from the new 7C Redshift Survey to investigate correlations between the narrow-line luminosities and the radio properties of radio galaxies and steep-spectrum quasars. The 7C Redshift Survey is a low-frequency (151 MHz) selected sample with a flux-density limit about 25-times fainter than the 3CRR sample. By combining these samples, we can for the first time distinguish whether the correlations present are controlled by 151 MHz radio luminosity L_151 or redshift z. We find unequivocal evidence that the dominant effect is a strong positive correlation between narrow line luminosity L_NLR and L_151, of the form L_NLR proportional to L_151 ^ 0.79 +/- 0.04. Correlations of L_NLR with redshift or radio properties, such as linear size or 151 MHz (rest-frame) spectral index, are either much weaker or absent. We use simple assumptions to estimate the total bulk kinetic power Q of the jets in FRII radio sources, and confirm the underlying proportionality between jet power and narrow line luminosity first discussed by Rawlings & Saunders (1991). We make the assumption that the main energy input to the narrow line region is photoionisation by the quasar accretion disc, and relate Q to the disc luminosity, Q_phot. We find that 0.05 < Q / Q_phot < 1 so that the jet power is within about an order of magnitude of the accretion disc luminosity. The most powerful radio sources are accreting at rates close to the Eddington limit of supermassive black holes (~ 10^9 - 10^10 solar masses), whilst lower power sources are accreting at sub-Eddington rates.Comment: 20 pages, 7 figures, to be published in MNRA
    corecore