133 research outputs found
A Framework to Evaluate the SDG Contribution of Fluvial Nature-Based Solutions
Nature-based solutions (NBSs) are measures reflecting the ‘cooperation with nature’ approach: mitigating fluvial flood risk while being cost-effective, resource-efficient, and providing numerous environmental, social, and economic benefits. Since 2015, the United Nations (UN) 2030 Agenda has provided UN member states with goals, targets, and indicators to facilitate an integrated approach focusing on economic, environmental, and social improvements simultaneously. The aim of this study is to evaluate the contribution of fluvial NBSs to the UN 2030 Agenda, using all its components: Sustainable Development Goals (SDGs), targets, and indicators. We propose a four-step framework with inputs from the UN 2030 Agenda, scientific literature, and case studies. The framework provides a set of fluvial flooding indicators that are linked to SDG indicators of the UN 2030 Agenda. Finally, the fluvial flooding indicators are tested by applying them to a case study, the Eddleston Water Project, aiming to examine its contribution to the UN 2030 Agenda. This reveals that the Eddleston Water Project contributes to 9 SDGs and 33 SDG targets from environmental, economic, societal, policy, and technical perspectives. Our framework aims to enhance the systematic considerations of the SDG indicators, adjust their notion to the system of interest, and thereby enhance the link between the sustainability performance of NBSs and the UN 2030 AgendaRivers, Ports, Waterways and Dredging Engineerin
Assessing the IUCN global standard as a framework for nature-based solutions in river flood management applications
Nature-based Solutions (NbS) are actions that harness nature to help address major societal challenges. The assessment frameworks for NbS proposed in the literature differ in scope and intended use. In 2020, the International Union for Conservation of Nature (IUCN) introduced their Global Standard for NbS as a framework that can be used by anyone working on different types of NbS. Since research on the applicability of the IUCN Standard remains limited, the aim of this paper is to analyse whether the IUCN Standard may be used as an overarching assessment framework for NbS in river flood management applications and to identify the main differences in content with other NbS-frameworks. This was achieved through a comparison with 29 assessment frameworks for NbS, that are applicable to physical interventions for riverine flood risk reduction. The comparisons showed that the IUCN Standard has the largest breadth in scope of application and may therefore be used as an overarching framework. In addition, we identified a distinction between frameworks for the assessment of project processes (process-oriented) and project results (results-oriented), where the IUCN Standard can be characterized as process-oriented. This implies that the IUCN Standard may be used to assess the processes (e.g. stakeholder engagement and adaptive management) of planned, ongoing or completed NbS projects for a wide variety of environmental contexts and societal challenges. This will help persuade policy makers to consider NbS as one of the solutions in flood management issues, next to or in combination with e.g. engineering solutions or changing land use. We also identified that, while the IUCN Standard is straightforward to use and incorporates stakeholder input, the environmental context specificity as well as guidance depth on resources for assessment can be improved.</p
The role of supply chain collaboration in disruption recovery : a logistics services perspective
Purpose of the study: Supply chains are faced with various disruptions which impact the performance of the
focal firm and its network partners, such as third-party logistics providers (3PLs). Successful supply chain
collaboration (SCC) can improve supply chain performance and provide greater synergistic advantages to
network partners than could be achieved when working independently. SCC has been addressed extensively
in the literature, but the specific role of SCC in supply chain disruption (SCD) recovery is unclear. This study
aimed to explore how South African 3PLs and their clients collaborate during SCD recovery and the enablers
of and barriers to such SCC.
DESIGN/METHODOLOGY/APPROACH : This study employed a generic qualitative research design. Data were
collected from ten 3PLs and ten client firms through semi-structured interviews with senior managers.
FINDINGS : The study identified four distinct roles of SCC during disruption recovery: facilitating, contributing,
interconnecting and retaining. Furthermore, 3PLs and clients identified communication, IT, risk mitigation, and risk response tools and techniques for SCC during SCD recovery. In addition, the findings also reveal a range of intra- and inter-firm enablers and barriers to SCC during disruption recovery. RECOMMENDATIONS/VALUE : This study builds on the current literature by exploring SCC in SCD recovery within an emerging market setting, and SCC between 3PLs and their clients in an SCD recovery context. MANAGERIAL IMPLICATIONS : Having a deeper understanding of the role of SCC in SCD recovery, the tools and techniques for SCC in SCD recovery and what drives and prevents SCC in SCD recovery, practitioners can fully realise the benefits associated with successful SCC in SCD recovery.https://www.jcman.co.za/#/homeam2023Business Managemen
Workshop Diversified strip- and inter-cropping systems: what can we gain in modern organic farming?
The main questions at the workshop are:
What can strip- and inter-cropped vegetable and arable systems look like in space, time and genetic material
- to increase biodiversity and biocontrol
- to increase soil nutrient use efficiency
- when managed with new agronomic technology, e.g. robots and sensors
to support the development of strip- and inter-cropping on medium and larger-scale farms?
What are experiences, challenges and barriers in practice and what can we learn from researchers
Human severe sepsis cytokine mixture increases β2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro.
INTRODUCTION: Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro.
METHODS: The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)).
RESULTS: Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either β2 (CD18), αL/β2 (CD11α/CD18; LFA-1) or αM/β2 (CD11β/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion.
CONCLUSIONS: Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a β2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE
Human severe sepsis cytokine mixture increases beta 2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro
Introduction: Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. Methods: The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). Results: Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either beta 2 (CD18), alpha(L)/beta(2) (CD11 alpha/CD18; LFA-1) or alpha(M)/beta(2) (CD11 beta/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. Conclusions: Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a beta 2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE
- …