230 research outputs found

    Weak decays of 4He-Lambda

    Get PDF
    We measured the lifetime and the mesonic and non-mesonic decay rates of the 4He-Lambda hypernucleus. The hypernuclei were created using a 750 MeV/c momentum K- beam on a liquid 4He target by the reaction 4He(K-,pi-)4He-Lambda. The 4He-Lambda lifetime was directly measured using protons from Lambda p -> n p non-mesonic decay (also referred to as proton-stimulated decay) and was found to have a value of tau = 245 +/- 24 ps. The mesonic decay rates were determined from the observed numbers of pi-'s and pi0's as Gamma_pi-/Gamma_tot = 0.270 +/- 0.024 and Gamma_pi0/Gamma_tot = 0.564 +/- 0.036, respectively, and the values of the proton- and neutron-stimulated decay rates were extracted as Gamma_p/Gamma_tot = 0.169 +/- 0.019 and Gamma_n/Gamma_tot <= 0.032 (95% CL), respectively. The effects of final-state interactions and possible 3-body Lambda N N decay contributions were studied in the context of a simple model of nucleon-stimulated decay. Nucleon-nucleon coincidence events were observed and were used in the determination of the non-mesonic branching fractions. The implications of the results of this analysis were considered for the empirical Delta I = 1/2 rule and the decay rates of the 4H-Lambda hypernucleus.Comment: 15 pages, 11 figures, published in PRC, revised content to match published versio

    A SENSITIVE NEUTRON SPECTROMETER FOR THE NATIONAL IGNITION FACILITY

    Get PDF

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure
    corecore