5,531 research outputs found

    Design and Focused Ion Beam Fabrication of Single Crystal Diamond Nanobeam Cavities

    Full text link
    We present the design and fabrication of nanobeam photonic crystal cavities in single crystal diamond for applications in cavity quantum electrodynamics. First, we describe three-dimensional finite-difference time-domain simulations of a high quality factor (Q ~ 10^6) and small mode volume (V ~ 0.5 ({\lambda}/n)^3) device whose cavity resonance corresponds to the zero-phonon transition (637nm) of the Nitrogen-Vacancy (NV) color center in diamond. This high Q/V structure, which would allow for strong light-matter interaction, is achieved by gradually tapering the size of the photonic crystal holes between the defect center and mirror regions of the nanobeam. Next, we demonstrate two different focused ion beam (FIB) fabrication strategies to generate thin diamond membranes and nanobeam photonic crystal resonators from a bulk crystal. These approaches include a diamond crystal "side-milling" procedure as well as an application of the "lift-off" technique used in TEM sample preparation. Finally, we discuss certain aspects of the FIB fabrication routine that are a challenge to the realization of the high-Q/V designs

    A nature-derived, flexible and three dimensional (3D) nano-composite for chronic wounds pH monitoring

    Get PDF
    Current technologies on conductive carbon aerogels are merely for application of super-capacitors, anodes of lithium ion batteries and electrocatalysts. To our best knowledge, carbon nanofibre (CNF) aerogels in biomedical application of chronic wound monitoring have not been reported yet. In this paper, we proposed a chronic wounds pH sensor, which is based on 3D free-standing conductive CNF aerogel derived from pyrolyzed bacterial cellulose (p-BC) as conducting substrate and it is incorporated with flexible and proton-selective PDMS/PANI composite. The resulted p-BC/PDMS/PANI nanocomposite is soft, flexible, and can exhibit near Nernst limit pH sensitivity (~−50.4 mV/pH) in pH buffer solution, and −29 mV/pH in in vitro simulated wound fluid. This renders its applications in flexible bio-sensors and smart wound dressings

    An improved perturbation approach to the 2D Edwards polymer -- corrections to scaling

    Full text link
    We present the results of a new perturbation calculation in polymer statistics which starts from a ground state that already correctly predicts the long chain length behaviour of the mean square end--to--end distance RN2 \langle R_N^2 \rangle\ , namely the solution to the 2~dimensional~(2D) Edwards model. The RN2\langle R_N^2 \rangle thus calculated is shown to be convergent in NN, the number of steps in the chain, in contrast to previous methods which start from the free random walk solution. This allows us to calculate a new value for the leading correction--to--scaling exponent~Δ\Delta. Writing RN2=AN2ν(1+BNΔ+CN1+...)\langle R_N^2 \rangle = AN^{2\nu}(1+BN^{-\Delta} + CN^{-1}+...), where ν=3/4\nu = 3/4 in 2D, our result shows that Δ=1/2\Delta = 1/2. This value is also supported by an analysis of 2D self--avoiding walks on the {\em continuum}.Comment: 17 Pages of Revtex. No figures. Submitted to J. Phys.

    Vibration signature analysis of multistage gear transmission

    Get PDF
    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system

    Effect of Sodium Treatment on the Performance of Electrostatic Spray Assisted Vapour Deposited Copper-poor Cu(In,Ga)(S,Se)2 Solar Cells

    Get PDF
    In our work, eco-friendly, non-vacuum and low cost Electrostatic Spray Assisted Vapour Deposition (ESAVD) method has been used to produce Cu(In,Ga)(S,Se) 2 (CIGS) solar cells. Copper (Cu) deficient (Cu/In + Ga = 0.76) CIGS films were designed to avoid the rather dangerous KCN treatment step for the removal of conductive minor phases of Cu 2 S/Cu 2 Se. A simple sodium (Na) treatment method was used to modify the morphology and electronic properties of the absorber and it clearly improved the solar cell performance. The SEM and XRD results testified a slightly increase of the grain size and (112) crystal orientation in the Na-incorporated CIGS thin films. From the Mott-schottky results, it can be seen that the functions of the Na treatment in our non-vacuum deposited CIGS are mainly used for defect passivation and reduction of charge recombination. Photovoltaic characteristics and j-V curve demonstrated that the dipping of CIGS films in 0.2 M NaCl solution for 20 minutes followed by selenization at 550 °C under selenium vapor resulted in the optimum photovoltaic performance, with j sc , V oc , FF and η of the optimized solar cell of 29.30 mA cm -2 , 0.564 V, 65.59% and 10.83%, respectively

    Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells

    Get PDF
    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc = 0.518 V, jsc = 28.79 mA cm(-2), fill factor = 64.02%, and a promising power conversion efficiency of η = 9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost

    The Van der Waals interaction of the hydrogen molecule - an exact local energy density functional

    Full text link
    We verify that the van der Waals interaction and hence all dispersion interactions for the hydrogen molecule given by: W"= -{A/R^6}-{B/R^8}-{C/R^10}- ..., in which R is the internuclear separation, are exactly soluble. The constants A=6.4990267..., B=124.3990835 ... and C=1135.2140398... (in Hartree units) first obtained approximately by Pauling and Beach (PB) [1] using a linear variational method, can be shown to be obtainable to any desired accuracy via our exact solution. In addition we shall show that a local energy density functional can be obtained, whose variational solution rederives the exact solution for this problem. This demonstrates explicitly that a static local density functional theory exists for this system. We conclude with remarks about generalising the method to other hydrogenic systems and also to helium.Comment: 11 pages, 13 figures and 28 reference

    Single Color Centers Implanted in Diamond Nanostructures

    Get PDF
    The development of materials processing techniques for optical diamond nanostructures containing a single color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (~20nm) to generate Nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal. Individual NV centers are then isolated mechanically by dry etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' (~1\mu m) implantation of individual NV centers into pre-fabricated diamond nanowire. The high single photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allows us to sustain strong photon anti-bunching even at high pump powers.Comment: 20 pages, 7 figure

    Bioactive coatings

    Get PDF
    From traditional approaches of employing bulk materials to the new generation of bioactive coated implants, the design of such medical tools is being directed towards the implementation bioactive compounds to allow the direct bonding of living tissues and osteoconduction. However, the development of an optimal bioactive implant for tissue regeneration has not been achieved. The research for novel materials is hindered by the biocompatibility and bioactivity of the compound as well as their mechanical properties. To improve the bioactivity of the implants, the increase of surface area of the implant as well as the use of resorbable compounds is being studied with promising results. Among all different materials and composite employed, the common materials include calcium phosphates and resorbable bioglasses inspired in natural scaffold composition of bones and teeth. In some cases, this material is being used as a coating and combined with further treatments and functional coatings which may reinforce its bioresponsive properties, and in some cases, it can provide additional properties such as antimicrobial activity. In addition, a specific class of bioactive coatings based on biodegradable polymers has also been developed. These coatings temporally aim at accelerating wound healing and forming new tissue at the material-tissue interface around implanted devices or protecting those implants against biomaterial-associated infections. Bioactive, degradable coatings can be generated both from natural and synthetic polymers. Common strategies, reviewed here, are based on natural polymers like proteins, polysaccharides, or glycosaminoglycanes to improve their bioactivity either by chemical functionalization of the biopolymer itself (e.g. introduction of bioactive groups) or by immobilization of bioactive components (e.g. cell adhesion peptides). Degradable or at least water-soluble synthetic polymers as polylactones or polyethylene glycols have been used for long time to create carrier materials for bioactive agents. As exemplary illustrated, those polymers are also used creating either substrate-adhering nanofilms or hydrogel-based thick coatings with high bioactivity to stimulate cell adhesion or avoid microbial adhesion. This chapter aims to summarize all recent approaches in the development of various bioactive coating materials, as well as the coating techniques and further treatment, functionalization and surface modification
    corecore