19 research outputs found

    Interlayer antisynchronization in degree-biased duplex networks

    Full text link
    With synchronization being one of nature's most ubiquitous collective behaviors, the field of network synchronization has experienced tremendous growth, leading to significant theoretical developments. However, most of these previous studies consider uniform connection weights and undirected networks with positive coupling. In the present article, we incorporate the asymmetry in a two-layer multiplex network by assigning the ratio of the adjacent nodes' degrees as the weights to the intralayer edges. Despite the presence of degree-biased weighting mechanism and attractive-repulsive coupling strengths, we are able to find the necessary conditions for intralayer synchronization and interlayer antisynchronization and test whether these two macroscopic states can withstand demultiplexing in a network. During the occurrence of these two states, we analytically calculate the oscillator's amplitude. In addition to deriving the local stability conditions for interlayer antisynchronization via the master stability function approach, we also construct a suitable Lyapunov function to determine a sufficient condition for global stability. We provide numerical evidence to show the necessity of negative interlayer coupling strength for the occurrence of antisynchronization, and such repulsive interlayer coupling coefficients can not destroy intralayer synchronization.Comment: 16 pages, 5 figures (Accepted for publication in the journal Physical Review E

    Controlling species densities in structurally perturbed intransitive cycles with higher-order interactions

    Full text link
    The persistence of biodiversity of species is a challenging proposition in ecological communities in the face of Darwinian selection. The present article investigates beyond the pairwise competitive interactions and provides a novel perspective for understanding the influence of higher-order interactions on the evolution of social phenotypes. Our simple model yields a prosperous outlook to demonstrate the impact of perturbations on intransitive competitive higher-order interactions. Using a mathematical technique, we show how alone the perturbed interaction network can quickly determine the coexistence equilibrium of competing species instead of solving a large system of ordinary differential equations. It is possible to split the system into multiple feasible cluster states depending on the number of perturbations. Our analysis also reveals the ratio between the unperturbed and perturbed species is inversely proportional to the amount of employed perturbation. Our results suggest that nonlinear dynamical systems and interaction topologies can be interplayed to comprehend species' coexistence under adverse conditions. Particularly our findings signify that less competition between two species increases their abundance and outperforms others.Comment: 17 pages, 10 figure

    Swarmalators under competitive time-varying phase interactions

    Full text link
    Swarmalators are entities with the simultaneous presence of swarming and synchronization that reveal emergent collective behavior due to the fascinating bidirectional interplay between phase and spatial dynamics. Although different coupling topologies have already been considered, here we introduce time-varying competitive phase interaction among swarmalators where the underlying connectivity for attractive and repulsive coupling varies depending on the vision (sensing) radius. Apart from investigating some fundamental properties like conservation of center of position and collision avoidance, we also scrutinize the cases of extreme limits of vision radius. The concurrence of attractive-repulsive competitive phase coupling allows the exploration of diverse asymptotic states, like static π\pi, and mixed phase wave states, and we explore the feasible routes of those states through a detailed numerical analysis. In sole presence of attractive local coupling, we reveal the occurrence of static cluster synchronization where the number of clusters depends crucially on the initial distribution of positions and phases of each swarmalator. In addition, we analytically calculate the sufficient condition for the emergence of the static synchronization state. We further report the appearance of the static ring phase wave state and evaluate its radius theoretically. Finally, we validate our findings using Stuart-Landau oscillators to describe the phase dynamics of swarmalators subject to attractive local coupling.Comment: 21 pages, 12 figures; accepted for publication in New Journal of Physic

    Consensus Formation Among Mobile Agents in Networks of Heterogeneous Interaction Venues

    Full text link
    Exploring the collective behavior of interacting entities is of great interest and importance. Rather than focusing on static and uniform connections, we examine the co-evolution of diverse mobile agents experiencing varying interactions across both space and time. Analogous to the social dynamics of intrinsically diverse individuals who navigate between and interact within various physical or digital locations, agents in our model traverse a complex network of heterogeneous environments and engage with everyone they encounter. The precise nature of agents internal dynamics and the various interactions that nodes induce are left unspecified and can be tailored to suit the requirements of individual applications. We derive effective dynamical equations for agent states which are instrumental in investigating thresholds of consensus, devising effective attack strategies to hinder coherence, and designing optimal network structures with inherent node variations in mind. We demonstrate that agent cohesion can be promoted by increasing agent density, introducing network heterogeneity, and intelligently designing the network structure, aligning node degrees with the corresponding interaction strengths they facilitate. Our findings are applied to two distinct scenarios: the synchronization of brain activities between interacting individuals, as observed in recent collective MRI scans, and the emergence of consensus in a cusp catastrophe model of opinion dynamics.Comment: 18 pages, 10 figure

    Extreme rotational events in a forced-damped nonlinear pendulum

    Get PDF
    Since Galileo's time, the pendulum has evolved into one of the most exciting physical objects in mathematical modeling due to its vast range of applications for studying various oscillatory dynamics, including bifurcations and chaos, under various interests. This well-deserved focus aids in comprehending various oscillatory physical phenomena that can be reduced to the equations of the pendulum. The present article focuses on the rotational dynamics of the two-dimensional forced damped pendulum under the influence of the ac and dc torque. Interestingly, we are able to detect a range of the pendulum's length for which the angular velocity exhibits a few intermittent extreme rotational events that deviate significantly from a certain well-defined threshold. The statistics of the return intervals between these extreme rotational events are supported by our data to be spread exponentially. The numerical results show a sudden increase in the size of the chaotic attractor due to interior crisis which is the source of instability that is responsible for triggering large amplitude events in our system. We also notice the occurrence of phase slips with the appearance of extreme rotational events when phase difference between the instantaneous phase of the system and the externally applied ac torque is observed.Comment: 10 pages, 7 figures, Comments are welcom

    Hidden attractors: A new chaotic system without equilibria

    No full text
    Localization of hidden attractors is one of the most challenging tasks in the nonlinear dynamics due to deficiency of properly justified analytical and numerical procedures. But understanding about the emergence of such unexpected occurrence of hidden attractors is desirable, because that can help to diminish the unexpected switch from one attractor to another undesired behavior. We propose a novel autonomous three-dimensional system exhibiting hidden attractor. These attractors can not be tracked using perpetual points. The reason behind this inefficiency is explained using theory of differential equations. Our system consists a slow manifold depicted through the time-series, although the system has no equilibrium points or such multiplicative parameters. We also discuss the behavior of the attractor using time-series analysis, bifurcation theory, Lyapunov spectrum and Kaplan-Yorke dimension. Moreover, the attractor no longer exists for a range of parameter values due to sudden change of strange attractors indicating a possible inverse crisis route to chaos

    Synchronization in dynamic network using threshold control approach

    No full text
    Synchronization in time-varying (i.e., dynamic) network has been explored using different types of couplings during the last two decades. In this paper, we consider a dynamic network where the spatial position of each node decides the number of nodes with which it interacts. We analytically derive the density-dependent threshold of coupling strength for synchrony using linear stability analysis and numerically verify the obtained results. We use two paradigmatic chaotic systems, namely the Rössler and Lorenz models to affirm our claims

    Perspective on attractive-repulsive interactions in dynamical networks: Progress and future

    No full text
    Emerging collective behavior in complex dynamical networks depends on both coupling function and underlying coupling topology. Through this Perspective, we provide a brief yet profound excerpt of recent research efforts that explore how the synergy of attractive and repulsive interactions influence the destiny of ensembles of interacting dynamical systems. We review the incarnation of collective states ranging from chimera or solitary states to extreme events and oscillation quenching arising as a result of different network arrangements. Though the existing literature demonstrates that many of the crucial developments have been made, nonetheless, we come up with significant routes of further research in this field of study
    corecore