14,743 research outputs found

    Tax evasion dynamics and Zaklan model on Opinion-dependent Network

    Full text link
    Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on Stauffer-Hohnisch-Pittnauer (SHP) networks. To control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhood of the critical noise qcq_{c} to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied besides using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies giving the same behavior regardless of dynamic or topology used here.Comment: 14 page, 4 figure

    Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions

    Full text link
    The traffic-like collective movement of ants on a trail can be described by a stochastic cellular automaton model. We have earlier investigated its unusual flow-density relation by using various mean field approximations and computer simulations. In this paper, we study the model following an alternative approach based on the analogy with the zero range process, which is one of the few known exactly solvable stochastic dynamical models. We show that our theory can quantitatively account for the unusual non-monotonic dependence of the average speed of the ants on their density for finite lattices with periodic boundary conditions. Moreover, we argue that the model exhibits a continuous phase transition at the critial density only in a limiting case. Furthermore, we investigate the phase diagram of the model by replacing the periodic boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure

    Infection by choleraphage Φ 138: bacteriophage DNA and replicative intermediates

    Get PDF
    Choleraphage Φ 138 contains a linear, double-stranded, circularly permuted DNA molecule of 30 × 106 daltons or 45 kilobase pairs. Upon infection, the host DNA is degraded, and synthesis of phage-specific DNA is detectable 20 min after infection. The phage utilizes primarily the host DNA degradation products for its own DNA synthesis. A physical map of Φ138 DNA was constructed with the restriction endonucleases Bg/II, HindIII, and PstI. A concatemeric replicative DNA intermediate equivalent to eight mature genome lengths was identified. The concatemer was shown to be the precursor for the synthesis of mature bacteriophage DNA which is subsequently packaged by a headful mechanism

    Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    Full text link
    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form sequentially outward from the groove edge, with the first one forming after 50 ps. A 1-D analytical model of electron heating and surface plasmon polariton (SPP) excitation induced by the interaction of incoming laser pulse with the groove edge qualitatively explains the time-evloution of LIPSS formation.Comment: 4 pages, 5 figure

    Flow properties of driven-diffusive lattice gases: theory and computer simulation

    Get PDF
    We develop n-cluster mean-field theories (0 < n < 5) for calculating the flow properties of the non-equilibrium steady-states of the Katz-Lebowitz-Spohn model of the driven diffusive lattice gas, with attractive and repulsive inter-particle interactions, in both one and two dimensions for arbitrary particle densities, temperature as well as the driving field. We compare our theoretical results with the corresponding numerical data we have obtained from the computer simulations to demonstrate the level of accuracy of our theoretical predictions. We also compare our results with those for some other prototype models, notably particle-hopping models of vehicular traffic, to demonstrate the novel qualitative features we have observed in the Katz-Lebowitz-Spohn model, emphasizing, in particular, the consequences of repulsive inter-particle interactions.Comment: 12 RevTex page

    Design discharge estimation from urban catchments - a comparison between ARR1987 and ARR2016

    Get PDF
    Australian Rainfall and Runoff (ARR) is a national guideline to assist engineers and practitioners in estimating design flood characteristics in Australia. ARR is pivotal to the safety and sustainability of Australian infrastructure, communities and the environment. The guidelines and data included in the 3rd edition of the guideline (ARR1987) have been used by the civil engineering industry for many years. However, since the development of ARR1987, there have been major advancements in technology, the availability of rainfall data, the industry’s understanding of rainfall patterns, ground infiltration characteristics and rainfall-runoff routing procedures. In response to these advancements, the 4th edition of Australian Rainfall and Runoff (ARR2016) has recently been released and includes recommended updates to flood estimation methods. This paper presents a comparison of the practical application of ARR1987 and ARR2016 in the regional Queensland city of Bundaberg, focusing on three major updates within ARR2016 which are likely to influence the peak design discharge: updated intensity frequency duration (IFD) data, rainfall temporal patterns (including methodology for application) and climate change recommendations

    Probing the superconducting ground state of the noncentrosymmetric superconductors CaTSi3 (T = Ir, Pt) using muon-spin relaxation and rotation

    Full text link
    The superconducting properties of CaTSi3 (where T = Pt and Ir) have been investigated using muon spectroscopy. Our muon-spin relaxation results suggest that in both these superconductors time-reversal symmetry is preserved, while muon-spin rotation data show that the temperature dependence of the superfluid density is consistent with an isotropic s-wave gap. The magnetic penetration depths and upper critical fields determined from our transverse-field muon-spin rotation spectra are found to be 448(6) and 170(6) nm, and 3800(500) and 1700(300) G, for CaPtSi3 and CaIrSi3 respectively. The superconducting coherence lengths of the two materials have also been determined and are 29(2) nm for CaPtSi3 and 44(4) nm for CaIrSi3.Comment: 6 pages, 7 figure

    Abortive replication of choleraphage Φ 149 in Vibrio cholerae biotype El Tor

    Get PDF
    Choleraphage Φ 149 adsorbed irreversibly to Vibrio cholerae biotype el tor cells, and 50% of the injected phage DNA bound to the cell membrane. Although no infectious centers were produced at any time during infection, the host macromolecular syntheses were shut off and the host DNA underwent chloramphenicol-inhibitable degradation. Synthesis of monomeric phage DNA continued similar to that observed in the permissive host. However, the concatemeric DNA intermediates produced were unstable and could not be chased to mature phage DNA. Pulse-labeling of UV-irradiated infected cells at different times during infection allowed identification of phage-specific proteins made in this nonpermissive host. Although most of the early proteins were made, only some of the late proteins were transiently synthesized

    Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic

    Full text link
    We study the impact of global traffic light control strategies in a recently proposed cellular automaton model for vehicular traffic in city networks. The model combines basic ideas of the Biham-Middleton-Levine model for city traffic and the Nagel-Schreckenberg model for highway traffic. The city network has a simple square lattice geometry. All streets and intersections are treated equally, i.e., there are no dominant streets. Starting from a simple synchronized strategy we show that the capacity of the network strongly depends on the cycle times of the traffic lights. Moreover we point out that the optimal time periods are determined by the geometric characteristics of the network, i.e., the distance between the intersections. In the case of synchronized traffic lights the derivation of the optimal cycle times in the network can be reduced to a simpler problem, the flow optimization of a single street with one traffic light operating as a bottleneck. In order to obtain an enhanced throughput in the model improved global strategies are tested, e.g., green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure
    corecore