82 research outputs found

    Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer

    Get PDF
    This study identified LIMK2 kinase as a disease-specific target in castration resistant prostate cancer (CRPC) pathogenesis, which is upregulated in response to androgen deprivation therapy, the current standard of treatment for prostate cancer. Surgical castration increases LIMK2 expression in mouse prostates due to increased hypoxia. Similarly, human clinical specimens showed highest LIMK2 levels in CRPC tissues compared to other stages, while minimal LIMK2 was observed in normal prostates. Most notably, inducible knockdown of LIMK2 fully reverses CRPC tumorigenesis in castrated mice, underscoring its potential as a clinical target for CRPC. We also identified TWIST1 as a direct substrate of LIMK2, which uncovered the molecular mechanism of LIMK2-induced malignancy. TWIST1 is strongly associated with CRPC initiation, progression and poor prognosis. LIMK2 increases TWIST1 mRNA levels upon hypoxia; and stabilizes TWIST1 by direct phosphorylation. TWIST1 also stabilizes LIMK2 by inhibiting its ubiquitylation. Phosphorylation-dead TWIST1 acts as dominant negative and fully prevents EMT and tumor formation in vivo, thereby highlighting the significance of LIMK2-TWIST1 signaling axis in CRPC. As LIMK2 null mice are viable, targeting LIMK2 should have minimal collateral toxicity, thereby improving the overall survival of CRPC patients

    Short Article g-H2AX Dephosphorylation by Protein Phosphatase 2A Facilitates DNA Double-Strand Break Repair

    Get PDF
    Summary Phosphorylated histone H2AX (g-H2AX) forms foci over large chromatin domains surrounding doublestranded DNA breaks (DSB). These foci recruit DSB repair proteins and dissolve during or after repair is completed. How g-H2AX is removed from chromatin remains unknown. Here, we show that protein phosphatase 2A (PP2A) is involved in removing g-H2AX foci. The PP2A catalytic subunit [PP2A(C)] and g-H2AX coimmunoprecipitate and colocalize in DNA damage foci and PP2A dephosphorylates g-H2AX in vitro. The recruitment of PP2A(C) to DNA damage foci is H2AX dependent. When PP2A(C) is inhibited or silenced by RNA interference, g-H2AX foci persist, DNA repair is inefficient, and cells are hypersensitive to DNA damage. The effect of PP2A on g-H2AX levels is independent of ATM, ATR, or DNA-PK activity

    KAP-1 promotes resection of broken DNA ends not protected by Îł-H2AX and 53BP1 in G1-phase lymphocytes

    Get PDF
    The resection of broken DNA ends is required for DNA double-strand break (DSB) repair by homologous recombination (HR) but can inhibit normal repair by nonhomologous end joining (NHEJ), the main DSB repair pathway in G(1)-phase cells. Antigen receptor gene assembly proceeds through DNA DSB intermediates generated in G(1)-phase lymphocytes by the RAG endonuclease. These DSBs activate ATM, which phosphorylates H2AX, forming Îł-H2AX in flanking chromatin. Îł-H2AX prevents CtIP from initiating resection of RAG DSBs. Whether there are additional proteins required to promote resection of these DNA ends is not known. KRAB-associated protein 1 (KAP-1) (TRIM28) is a transcriptional repressor that modulates chromatin structure and has been implicated in the repair of DNA DSBs in heterochromatin. Here, we show that in murine G(1)-phase lymphocytes, KAP-1 promotes resection of DSBs that are not protected by H2AX and its downstream effector 53BP1. In these murine cells, KAP-1 activity in DNA end resection is attenuated by a single-amino-acid change that reflects a KAP-1 polymorphism between primates and other mammalian species. These findings establish KAP-1 as a component of the machinery that can resect DNA ends in G(1)-phase cells and suggest that there may be species-specific features to this activity

    EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma

    Get PDF
    Many cancer types are driven by oncogenic transcription factors that have been difficult to drug. Transcriptional inhibitors, however, may offer inroads into targeting these cancers. Through chemical genomics screening, we identified that Ewing sarcoma is a disease with preferential sensitivity to THZ1, a covalent small-molecule CDK7/12/13 inhibitor. The selective CDK12/13 inhibitor, THZ531, impairs DNA damage repair in an EWS/FLI-dependent manner, supporting a synthetic lethal relationship between response to THZ1/THZ531 and EWS/FLI expression. The combination of these molecules with PARP inhibitors showed striking synergy in cell viability and DNA damage assays in vitro and in multiple models of Ewing sarcoma, including a PDX, in vivo without hematopoietic toxicity. Iniguez et al. find that inhibition of CDK12 is synthetic lethal with EWS/FLI expression. CDK12/13 inhibitors impair DNA damage repair in cells expressing EWS/FLI, and the combination of CDK12/13 and PARP inhibitors synergistically reduces tumor growth and extends survival in Ewing sarcoma mouse models

    TIRR regulates 53BP1 by masking its histone methyl-lysine binding function

    Get PDF
    53BP1 is a multi-functional double-strand break (DSB) repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumors to PARP inhibitors. Central to all 53BP1 activities is its recruitment to DSBs via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, TIRR (Tudor Interacting Repair Regulator) that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, ATM phosphorylates 53BP1 and recruits RIF1 to dissociate the 53BP1–TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to DSBs. Depletion of TIRR destabilizes 53BP1 in the nuclear soluble fraction and also alters the DSB-induced protein complex centering 53BP1. These findings identify TIRR as a new factor that influences DSB repair utilizing a unique mechanism of masking the histone methyl-lysine binding function of 53BP1
    • …
    corecore