1,081 research outputs found
Hi-Val: Iterative Learning of Hierarchical Value Functions for Policy Generation
Task decomposition is effective in manifold applications where the global complexity of a problem makes planning and decision-making too demanding. This is true, for example, in high-dimensional robotics domains, where (1) unpredictabilities and modeling limitations typically prevent the manual specification of robust behaviors, and (2) learning an action policy is challenging due to the curse of dimensionality. In this work, we borrow the concept of Hierarchical Task Networks (HTNs) to decompose the learning procedure, and we exploit Upper Confidence Tree (UCT) search to introduce HOP, a novel iterative algorithm for hierarchical optimistic planning with learned value functions. To obtain better generalization and generate policies, HOP simultaneously learns and uses action values. These are used to formalize constraints within the search space and to reduce the dimensionality of the problem. We evaluate our algorithm both on a fetching task using a simulated 7-DOF KUKA light weight arm and, on a pick and delivery task with a Pioneer robot
Experimental Results of Concurrent Learning Adaptive Controllers
Commonly used Proportional-Integral-Derivative based UAV flight controllers are often seen to provide adequate trajectory-tracking performance only after extensive tuning. The gains of these controllers are tuned to particular platforms, which makes transferring controllers from one UAV to other time-intensive. This paper suggests the use of adaptive controllers in speeding up the process of extracting good control performance from new UAVs. In particular, it is shown that a concurrent learning adaptive controller improves the trajectory tracking performance of a quadrotor with baseline linear controller directly imported from another quadrotors whose inertial characteristics and throttle mapping are very di fferent. Concurrent learning adaptive control uses specifi cally selected and online recorded data concurrently with instantaneous data and is capable of guaranteeing tracking error and weight error convergence without requiring persistency of excitation. Flight-test results are presented on indoor quadrotor platforms operated in MIT's RAVEN environment. These results indicate the feasibility of rapidly developing high-performance UAV controllers by using adaptive control to augment a controller transferred from another UAV with similar control assignment structure.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N000141110688)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 0645960)Boeing Scientific Research Laboratorie
First hospital outbreak of the globally emerging Candida auris in a European hospital
Background: Candida auris is a globally emerging multidrug resistant fungal pathogen causing nosocomial transmission. We report an ongoing outbreak of C. auris in a London cardio-thoracic center between April 2015 and July 2016. This is the first report of C. auris in Europe and the largest outbreak so far. We describe the identification, investigation and implementation of control measures. Methods: Data on C. auris case demographics, environmental screening, implementation of infection prevention/control measures, and antifungal susceptibility of patient isolates were prospectively recorded then analysed retrospectively. Speciation of C. auris was performed by MALDI-TOF and typing of outbreak isolates performed by amplified fragment length polymorphism (AFLP). Results: This report describes an ongoing outbreak of 50 C. auris cases over the first 16 month (April 2015 to July 2016) within a single Hospital Trust in London. A total of 44 % (n = 22/50) patients developed possible or proven C. auris infection with a candidaemia rate of 18 % (n = 9/50). Environmental sampling showed persistent presence of the yeast around bed space areas. Implementation of strict infection and prevention control measures included: isolation of cases and their contacts, wearing of personal protective clothing by health care workers, screening of patients on affected wards, skin decontamination with chlorhexidine, environmental cleaning with chorine based reagents and hydrogen peroxide vapour. Genotyping with AFLP demonstrated that C. auris isolates from the same geographic region clustered. Conclusion: This ongoing outbreak with genotypically closely related C. auris highlights the importance of appropriate species identification and rapid detection of cases in order to contain hospital acquired transmission
Resolution of Acute Hydrocephalus and Migration of Neurocysticercosis Cyst with External Ventricular Drainage
Neurocysticercosis is endemic in the developing world, but is becoming more common in the US due to immigration. A 24-year-old man presented with acute hydrocephalus and headaches, nausea, and vomiting. Head CT revealed a 3rd ventricular cyst and immunological studies were suggestive of neurocysticercosis. EVD placement resulted in migration of the cyst interiorly and superiorly with return of normal CSF flow by MRI and resolution of symptoms. Review of this condition is important given increasing incidence in the United States
Rare earth Dy activated Li3PO4:Dy phosphors for lyoluminescence dosimetry of ionizing radiations
Rare earth Dy doped Li3PO4 phosphate based phosphors were prepared by high temperature solid state diffusion technique. The peak LL intensity initially increases with increasing mass of the sample, then tends to attain a saturation value for higher mass of the solute added to the solvent. Eaelier experiments on gamma irradiated crystals have proved that the light emission originates from the recombination of released F-centres with trapped holes (V2-centres) at the liquid-solid interface.In this paper lyoluminescence(LL) characteristics of Li3PO4:Dy phosphors have been reported . These LL characteristics of Li3PO4 phosphor may be useful for high radiation dosimetry using LL technique
Comparative study on mechanoluminescence of Eu2+ doped phosphate based phosphors.
Eu2+ doped phosphate based phosphors were prepared by solid state diffusion technique. The phosphors have simple glow curve with single peak It is clear that the ML intensity increases with increasing concentration of Eu, attained an optimum value for 1 mole % for Sr5(PO4)3Cl:Eu2+, and 2 mole% for Li3PO4:Eu2+ and LaPO4:Eu2+, then decreases with further increase in concentration of Eu. The trapping and detrapping of charge carriers in the material can be studied using ML. It is believed that in the dynamic process of loading, internal friction originating from defects activates holes released from traps and stimulates mechanoluminescience. This phosphor can be used in the dosimetry of ionizing radiations using mechanoluminescence
Recommended from our members
Development of digital feedback systems for beam position and energy at the Thomas Jefferson National Accelerator Facility
The development of beam-based digital feedback systems for the CEBAF accelerator has gone through several stages. As the accelerator moved from commissioning to operation for the nuclear physics program, the top priority was to stabilize the beam against slow energy and position drifts (<1 Hz). These slow drifts were corrected using the existing accelerator monitors and actuators driven by software running on top of the EPICS control system. With slow drifts corrected, attention turned to quantifying the higher frequency disturbances on the beam and to designing the required feedback systems needed to achieve the CEBAF design stability requirements. Results from measurements showed the major components in position and energy to be at harmonics of the power line frequencies of 60, 120, and 180 Hz. Hardware and software was installed in two locations of the accelerator as prototypes for the faster feedback systems needed. This paper gives an overview of the measured beam disturbances and the feedback systems developed
Actuator Constrained Trajectory Generation and Control for Variable-Pitch Quadrotors
Control and trajectory generation algorithms for a quadrotor helicopter with
variable-pitch propellers are presented. The control law is not based on near-hover assumptions, allowing for large attitude deviations from hover. The trajectory generation algorithm ts a time-parametrized polynomial through any number of way points in R3, with a closed-form solution if the corresponding way point arrival times are known a priori. When time is not specifi ed, an algorithm for fi nding minimum-time paths subject to hardware actuator saturation limitations is presented. Attitude-specifi c constraints are easily embedded in the polynomial path formulation, allowing for aerobatic maneuvers to be performed using a single controller and trajectory generation algorithm. Experimental results on a variable pitch quadrotor demonstrate the control design and example trajectories.National Science Foundation (U.S.) (Graduate Research Fellowship under Grant No. 0645960
Theory of Change: a theory-driven approach to enhance the Medical Research Council's framework for complex interventions.
BACKGROUND: The Medical Research Councils' framework for complex interventions has been criticized for not including theory-driven approaches to evaluation. Although the framework does include broad guidance on the use of theory, it contains little practical guidance for implementers and there have been calls to develop a more comprehensive approach. A prospective, theory-driven process of intervention design and evaluation is required to develop complex healthcare interventions which are more likely to be effective, sustainable and scalable. METHODS: We propose a theory-driven approach to the design and evaluation of complex interventions by adapting and integrating a programmatic design and evaluation tool, Theory of Change (ToC), into the MRC framework for complex interventions. We provide a guide to what ToC is, how to construct one, and how to integrate its use into research projects seeking to design, implement and evaluate complex interventions using the MRC framework. We test this approach by using ToC within two randomized controlled trials and one non-randomized evaluation of complex interventions. RESULTS: Our application of ToC in three research projects has shown that ToC can strengthen key stages of the MRC framework. It can aid the development of interventions by providing a framework for enhanced stakeholder engagement and by explicitly designing an intervention that is embedded in the local context. For the feasibility and piloting stage, ToC enables the systematic identification of knowledge gaps to generate research questions that strengthen intervention design. ToC may improve the evaluation of interventions by providing a comprehensive set of indicators to evaluate all stages of the causal pathway through which an intervention achieves impact, combining evaluations of intervention effectiveness with detailed process evaluations into one theoretical framework. CONCLUSIONS: Incorporating a ToC approach into the MRC framework holds promise for improving the design and evaluation of complex interventions, thereby increasing the likelihood that the intervention will be ultimately effective, sustainable and scalable. We urge researchers developing and evaluating complex interventions to consider using this approach, to evaluate its usefulness and to build an evidence base to further refine the methodology. TRIAL REGISTRATION: Clinical trials.gov: NCT02160249
- …