11,086 research outputs found

    Viscid-inviscid interaction associated with incompressible flow past wedges at high Reynolds number

    Get PDF
    An analytical method is suggested for the study of the viscid inviscid interaction associated with incompressible flow past wedges with arbitrary angles. It is shown that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem, and the pressure can only be established from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as the boundary layer buildup, turbulent jet mixing, and recompression are individually analyzed and attached to the inviscid flow in the sense of the boundary layer concept. The interaction between the viscous and inviscid streams is properly displayed by the fact that the aforementioned discrete parameters needed for the inviscid flow are determined by the viscous flow condition at the point of reattachment. It is found that the reattachment point behaves as a saddle point singularity for the system of equations describing the recompressive viscous flow processes, and this behavior is exploited for the establishment of the overall flow field. Detailed results such as the base pressure, pressure distributions on the wedge, and the geometry of the wake are determined as functions of the wedge angle

    Averaging approximation to singularly perturbed nonlinear stochastic wave equations

    Full text link
    An averaging method is applied to derive effective approximation to the following singularly perturbed nonlinear stochastic damped wave equation \nu u_{tt}+u_t=\D u+f(u)+\nu^\alpha\dot{W} on an open bounded domain D⊂RnD\subset\R^n\,, 1≤n≤31\leq n\leq 3\,. Here ν>0\nu>0 is a small parameter characterising the singular perturbation, and να\nu^\alpha\,, 0≤α≤1/20\leq \alpha\leq 1/2\,, parametrises the strength of the noise. Some scaling transformations and the martingale representation theorem yield the following effective approximation for small ν\nu, u_t=\D u+f(u)+\nu^\alpha\dot{W} to an error of \ord{\nu^\alpha}\,.Comment: 16 pages. Submitte

    Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group

    Full text link
    We prove geometric LpL^p versions of Hardy's inequality for the sub-elliptic Laplacian on convex domains Ω\Omega in the Heisenberg group Hn\mathbb{H}^n, where convex is meant in the Euclidean sense. When p=2p=2 and Ω\Omega is the half-space given by ⟨ξ,ν⟩>d\langle \xi, \nu\rangle > d this generalizes an inequality previously obtained by Luan and Yang. For such pp and Ω\Omega the inequality is sharp and takes the form \begin{equation} \int_\Omega |\nabla_{\mathbb{H}^n}u|^2 \, d\xi \geq \frac{1}{4}\int_{\Omega} \sum_{i=1}^n\frac{\langle X_i(\xi), \nu\rangle^2+\langle Y_i(\xi), \nu\rangle^2}{\textrm{dist}(\xi, \partial \Omega)^2}|u|^2\, d\xi, \end{equation} where dist( ⋅ ,∂Ω)\textrm{dist}(\, \cdot\,, \partial \Omega) denotes the Euclidean distance from ∂Ω\partial \Omega.Comment: 14 page

    Twisted and Nontwisted Bifurcations Induced by Diffusion

    Full text link
    We discuss a diffusively perturbed predator-prey system. Freedman and Wolkowicz showed that the corresponding ODE can have a periodic solution that bifurcates from a homoclinic loop. When the diffusion coefficients are large, this solution represents a stable, spatially homogeneous time-periodic solution of the PDE. We show that when the diffusion coefficients become small, the spatially homogeneous periodic solution becomes unstable and bifurcates into spatially nonhomogeneous periodic solutions. The nature of the bifurcation is determined by the twistedness of an equilibrium/homoclinic bifurcation that occurs as the diffusion coefficients decrease. In the nontwisted case two spatially nonhomogeneous simple periodic solutions of equal period are generated, while in the twisted case a unique spatially nonhomogeneous double periodic solution is generated through period-doubling. Key Words: Reaction-diffusion equations; predator-prey systems; homoclinic bifurcations; periodic solutions.Comment: 42 pages in a tar.gz file. Use ``latex2e twisted.tex'' on the tex files. Hard copy of figures available on request from [email protected]

    Remarks on the extension of the Ricci flow

    Full text link
    We present two new conditions to extend the Ricci flow on a compact manifold over a finite time, which are improvements of some known extension theorems.Comment: 9 pages, to appear in Journal of Geometric Analysi

    Validation study of the Chinese Early Development Instrument (CEDI)

    Get PDF
    published_or_final_versio

    Numerical studies of the Lagrangian approach for reconstruction of the conductivity in a waveguide

    Full text link
    We consider an inverse problem of reconstructing the conductivity function in a hyperbolic equation using single space-time domain noisy observations of the solution on the backscattering boundary of the computational domain. We formulate our inverse problem as an optimization problem and use Lagrangian approach to minimize the corresponding Tikhonov functional. We present a theorem of a local strong convexity of our functional and derive error estimates between computed and regularized as well as exact solutions of this functional, correspondingly. In numerical simulations we apply domain decomposition finite element-finite difference method for minimization of the Lagrangian. Our computational study shows efficiency of the proposed method in the reconstruction of the conductivity function in three dimensions

    Robust Dropping Criteria for F-norm Minimization Based Sparse Approximate Inverse Preconditioning

    Full text link
    Dropping tolerance criteria play a central role in Sparse Approximate Inverse preconditioning. Such criteria have received, however, little attention and have been treated heuristically in the following manner: If the size of an entry is below some empirically small positive quantity, then it is set to zero. The meaning of "small" is vague and has not been considered rigorously. It has not been clear how dropping tolerances affect the quality and effectiveness of a preconditioner MM. In this paper, we focus on the adaptive Power Sparse Approximate Inverse algorithm and establish a mathematical theory on robust selection criteria for dropping tolerances. Using the theory, we derive an adaptive dropping criterion that is used to drop entries of small magnitude dynamically during the setup process of MM. The proposed criterion enables us to make MM both as sparse as possible as well as to be of comparable quality to the potentially denser matrix which is obtained without dropping. As a byproduct, the theory applies to static F-norm minimization based preconditioning procedures, and a similar dropping criterion is given that can be used to sparsify a matrix after it has been computed by a static sparse approximate inverse procedure. In contrast to the adaptive procedure, dropping in the static procedure does not reduce the setup time of the matrix but makes the application of the sparser MM for Krylov iterations cheaper. Numerical experiments reported confirm the theory and illustrate the robustness and effectiveness of the dropping criteria.Comment: 27 pages, 2 figure

    Multiplpe Choice Minority Game With Different Publicly Known Histories

    Full text link
    In the standard Minority Game, players use historical minority choices as the sole public information to pick one out of the two alternatives. However, publishing historical minority choices is not the only way to present global system information to players when more than two alternatives are available. Thus, it is instructive to study the dynamics and cooperative behaviors of this extended game as a function of the global information provided. We numerically find that although the system dynamics depends on the kind of public information given to the players, the degree of cooperation follows the same trend as that of the standard Minority Game. We also explain most of our findings by the crowd-anticrowd theory.Comment: Extensively revised, to appear in New J Phys, 7 pages with 4 figure

    Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue

    Full text link
    This article surveys many standard results about the braid group with emphasis on simplifying the usual algebraic proofs. We use van der Waerden's trick to illuminate the Artin-Magnus proof of the classic presentation of the algebraic mapping-class group of a punctured disc. We give a simple, new proof of the Dehornoy-Larue braid-group trichotomy, and, hence, recover the Dehornoy right-ordering of the braid group. We then turn to the Birman-Hilden theorem concerning braid-group actions on free products of cyclic groups, and the consequences derived by Perron-Vannier, and the connections with the Wada representations. We recall the very simple Crisp-Paris proof of the Birman-Hilden theorem that uses the Larue-Shpilrain technique. Studying ends of free groups permits a deeper understanding of the braid group; this gives us a generalization of the Birman-Hilden theorem. Studying Jordan curves in the punctured disc permits a still deeper understanding of the braid group; this gave Larue, in his PhD thesis, correspondingly deeper results, and, in an appendix, we recall the essence of Larue's thesis, giving simpler combinatorial proofs.Comment: 51`pages, 13 figure
    • …
    corecore