10,022 research outputs found

    Kundt spacetimes as solutions of topologically massive gravity

    Full text link
    We obtain new solutions of topologically massive gravity. We find the general Kundt solutions, which in three dimensions are spacetimes admitting an expansion-free null geodesic congruence. The solutions are generically of algebraic type II, but special cases are types III, N or D. Those of type D are the known spacelike-squashed AdS_3 solutions, and of type N are the known AdS pp-waves or new solutions. Those of types II and III are the first known solutions of these algebraic types. We present explicitly the Kundt solutions that are CSI spacetimes, for which all scalar polynomial curvature invariants are constant, whereas for the general case we reduce the field equations to a series of ordinary differential equations. The CSI solutions of types II and III are deformations of spacelike-squashed AdS_3 and the round AdS_3, respectively.Comment: 30 pages. This material has come from splitting v1 of arXiv:0906.3559 into 2 separate papers. v2: minor changes

    Exclusive Nonleptonic Decays of Bottom and Charm Baryons in a Relativistic Three-Quark Model: Evaluation of Nonfactorizing Diagrams

    Get PDF
    Exclusive nonleptonic decays of bottom and charm baryons are studied within a relativistic three-quark model with a Gaussian shape for the momentum dependence of the baryon-three-quark vertex. We include factorizing as well as nonfactorizing contributions to the decay amplitudes. For heavy-to-light transitions Q -> q u d the total contribution of the nonfactorizing diagrams amount up to approximately 60% of the factorizing contributions in amplitude, and up to approximately 30% for b -> c u d transitions. We calculate the rates and the polarization asymmetry parameters for various nonleptonic decays and compare them to existing data and to the results of other model calculations.Comment: 49 pages, LaTeX-fil

    Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions

    Full text link
    The large scale properties of spatiotemporal chaos in the 2d Kuramoto-Sivashinsky equation are studied using an explicit coarse graining scheme. A set of intermediate equations are obtained. They describe interactions between the small scale (e.g., cellular) structures and the hydrodynamic degrees of freedom. Possible forms of the effective large scale hydrodynamics are constructed and examined. Although a number of different universality classes are allowed by symmetry, numerical results support the simplest scenario, that being the KPZ universality class.Comment: 4 pages, 3 figure

    Ricci flow and black holes

    Get PDF
    Gradient flow in a potential energy (or Euclidean action) landscape provides a natural set of paths connecting different saddle points. We apply this method to General Relativity, where gradient flow is Ricci flow, and focus on the example of 4-dimensional Euclidean gravity with boundary S^1 x S^2, representing the canonical ensemble for gravity in a box. At high temperature the action has three saddle points: hot flat space and a large and small black hole. Adding a time direction, these also give static 5-dimensional Kaluza-Klein solutions, whose potential energy equals the 4-dimensional action. The small black hole has a Gross-Perry-Yaffe-type negative mode, and is therefore unstable under Ricci flow. We numerically simulate the two flows seeded by this mode, finding that they lead to the large black hole and to hot flat space respectively, in the latter case via a topology-changing singularity. In the context of string theory these flows are world-sheet renormalization group trajectories. We also use them to construct a novel free energy diagram for the canonical ensemble.Comment: 31 pages, 14 color figures. v2: Discussion of the metric on the space of metrics corrected and expanded, references adde

    Bound State and Order Parameter Mixing Effect by Nonmagnetic Impurity Scattering in Two-band Superconductors

    Full text link
    We investigate nonmagnetic impurity effects in two-band superconductors, focusing on the effects of interband scatterings. Within the Born approximation, it is known that interband scatterings mix order parameters in the two bands. In particular, only one averaged energy gap appears in the excitation spectrum in the dirty limit. [G. Gusman: J. Phys. Chem. Solids {\bf 28} (1967) 2327.] In this paper, we take into account the interband scattering within the tt-matrix approximation beyond the Born approximation in the previous work. We show that, although the interband scattering is responsible for the mixing effect, this effect becomes weak when the interband scattering becomes very strong. In the strong interband scattering limit, a two-gap structure corresponding to two order parameters recovers in the superconducting density of states. We also show that a bound state appears around a nonmagnetic impurity depending on the phase of interband scattering potential.Comment: 28pages, 10 figure

    Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations

    Get PDF
    Killing vector fields in three dimensions play important role in the construction of the related spacetime geometry. In this work we show that when a three dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the ricci tensor. Using this property we give ways of solving the field equations of Topologically Massive Gravity (TMG) and New Massive Gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three dimensional symmetric tensors of the geometry, the ricci and einstein tensors, their covariant derivatives at all orders, their products of all orders are completely determined by the Killing vector field and the metric. Hence the corresponding three dimensional metrics are strong candidates of solving all higher derivative gravitational field equations in three dimensions.Comment: 25 pages, some changes made and some references added, to be published in Classical and Quantum Gravit

    Special biconformal changes of K\"ahler surface metrics

    Full text link
    The term "special biconformal change" refers, basically, to the situation where a given nontrivial real-holomorphic vector field on a complex manifold is a gradient relative to two K\"ahler metrics, and, simultaneously, an eigenvector of one of the metrics treated, with the aid of the other, as an endomorphism of the tangent bundle. A special biconformal change is called nontrivial if the two metrics are not each other's constant multiples. For instance, according to a 1995 result of LeBrun, a nontrivial special biconformal change exists for the conformally-Einstein K\"ahler metric on the two-point blow-up of the complex projective plane, recently discovered by Chen, LeBrun and Weber; the real-holomorphic vector field involved is the gradient of its scalar curvature. The present paper establishes the existence of nontrivial special biconformal changes for some canonical metrics on Del Pezzo surfaces, viz. K\"ahler-Einstein metrics (when a nontrivial holomorphic vector field exists), non-Einstein K\"ahler-Ricci solitons, and K\"ahler metrics admitting nonconstant Killing potentials with geodesic gradients.Comment: 16 page
    corecore