11,033 research outputs found

    Theory of emission from an active photonic lattice

    Full text link
    The emission from a radiating source embedded in a photonic lattice is calculated. The analysis considers the photonic lattice and free space as a combined system. Furthermore, the radiating source and electromagnetic field are quantized. Results show the deviation of the photonic lattice spectrum from the blackbody distribution, with intracavity emission suppressed at certain frequencies and enhanced at others. In the presence of rapid population relaxation, where the photonic lattice and blackbody populations are described by the same equilibrium distribution, it is found that the enhancement does not result in output intensity exceeding that of the blackbody at the same frequency. However, for slow population relaxation, the photonic lattice population has a greater tendency to deviate from thermal equilibrium, resulting in output intensities exceeding those of the blackbody, even for identically pumped structures.Comment: 19 pages, 11 figure

    Local transient rheological behavior of concentrated suspensions

    Get PDF
    This paper reports experiments on the shear transient response of concentrated non-Brownian suspensions. The shear viscosity of the suspensions is measured using a wide-gap Couette rheometer equipped with a Particle Image Velocimetry (PIV) device that allows measuring the velocity field. The suspensions made of PMMA particles (31μ\mum in diameter) suspended in a Newtonian index- and density-matched liquid are transparent enough to allow an accurate measurement of the local velocity for particle concentrations as high as 50%. In the wide-gap Couette cell, the shear induced particle migration is evidenced by the measurement of the time evolution of the flow profile. A peculiar radial zone in the gap is identified where the viscosity remains constant. At this special location, the local particle volume fraction is taken to be the mean particle concentration. The local shear transient response of the suspensions when the shear flow is reversed is measured at this point where the particle volume fraction is well defined. The local rheological measurements presented here confirm the macroscopic measurements of Gadala-Maria and Acrivos (1980). After shear reversal, the viscosity undergoes a step-like reduction, decreases slower and passes through a minimum before increasing again to reach a plateau. Upon varying the particle concentration, we have been able to show that the minimum and the plateau viscosities do not obey the same scaling law with respect to the particle volume fraction. These experimental results are consistent with the scaling predicted by Mills and Snabre (2009) and with the results of numerical simulation performed on random suspensions [Sierou and Brady (2001)]. The minimum seems to be associated with the viscosity of an isotropic suspension, or at least of a suspension whose particles do not interact through non-hydrodynamic forces, while the plateau value would correspond to the viscosity of a suspension structured by the shear where the non-hydrodynamic forces play a crucial role

    Exact States in Waveguides With Periodically Modulated Nonlinearity

    Get PDF
    We introduce a one-dimensional model based on the nonlinear Schrodinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi dn function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. Numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. Exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered . The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.Comment: EPL, in pres

    Giant Modal Gain, Amplified Surface Plasmon Polariton Propagation, and Slowing Down of Energy Velocity in a Metal-Semiconductor-Metal Structure

    Full text link
    We investigated surface plasmon polariton (SPP) propagation in a metal-semiconductor-metal structure where semiconductor is highly excited to have optical gain. We show that near the SPP resonance, the imaginary part of the propagation wavevector changes from positive to hugely negative, corresponding to an amplified SPP propagation. The SPP experiences a giant gain that is 1000 times of material gain in the excited semiconductor. We show that such a giant gain is related to the slowing down of average energy propagation in the structur

    Asynchronous transfer mode link performance over ground networks

    Get PDF
    The results of an experiment to determine the feasibility of using asynchronous transfer mode (ATM) technology to support advanced spacecraft missions that require high-rate ground communications and, in particular, full-motion video are reported. Potential nodes in such a ground network include Deep Space Network (DSN) antenna stations, the Jet Propulsion Laboratory, and a set of national and international end users. The experiment simulated a lunar microrover, lunar lander, the DSN ground communications system, and distributed science users. The users were equipped with video-capable workstations. A key feature was an optical fiber link between two high-performance workstations equipped with ATM interfaces. Video was also transmitted through JPL's institutional network to a user 8 km from the experiment. Variations in video depending on the networks and computers were observed, the results are reported

    Controlling extended systems with spatially filtered, time-delayed feedback

    Full text link
    We investigate a control technique for spatially extended systems combining spatial filtering with a previously studied form of time-delay feedback. The scheme is naturally suited to real-time control of optical systems. We apply the control scheme to a model of a transversely extended semiconductor laser in which a desirable, coherent traveling wave state exists, but is a member of a nowhere stable family. Our scheme stabilizes this state, and directs the system towards it from realistic, distant and noisy initial conditions. As confirmed by numerical simulation, a linear stability analysis about the controlled state accurately predicts when the scheme is successful, and illustrates some key features of the control including the individual merit of, and interplay between, the spatial and temporal degrees of freedom in the control.Comment: 9 pages REVTeX including 7 PostScript figures. To appear in Physical Review

    Exploring a rheonomic system

    Get PDF
    A simple and illustrative rheonomic system is explored in the Lagrangian formalism. The difference between Jacobi's integral and energy is highlighted. A sharp contrast with remarks found in the literature is pointed out. The non-conservative system possess a Lagrangian not explicitly dependent on time and consequently there is a Jacobi's integral. The Lagrange undetermined multiplier method is used as a complement to obtain a few interesting conclusion
    corecore