413 research outputs found

    Asynchronous digital optical regenerator for 4 x 40 Gbit/s WDM to 160 Gbit/s OTDM conversion

    Get PDF
    We propose and numerically analyse an asynchronous digital optical regenerator using a single-EAM loop and a novel neighbor-combine approach. It effectively re-synchronizes input signals with arbitrary phases to the local clock, and regenerates signals with high amplitude fluctuation and polarization mode dispersion. We demonstrate the application of this regenerator for 4 x 40 Gbit/s WDM to 160 Gbit/s OTDM conversion

    Rayleigh noise mitigation in DWDM LR-PONs using carrier suppressed subcarrier-amplitude modulated phase shift keying

    Get PDF
    We demonstrate a novel Rayleigh interferometric noise mitigation scheme for applications in carrier-distributed dense wavelength division multiplexed (DWDM) passive optical networks at 10 Gbit/s using carrier suppressed subcarrier-amplitude modulated phase shift keying modulation. The required optical signal to Rayleigh noise ratio is reduced by 12 dB, while achieving excellent tolerance to dispersion, subcarrier frequency and drive amplitude variations

    A Damage Mechanics Approach to Fatigue Assessment in Offshore Structures

    Full text link
    This article is intended to describe the development of a fatigue damage model capable of assessing fatigue damage in offshore structures. This is achieved by for mulating a set of damage coupled constitutive and evolution equations which make the for mulation of a unified approach possible under both low and high cycle fatigue damage and consistent with the structural dynamic response of the changing/deteriorating material be haviors. The structural analysis for the whole designed period, say about 30 years, can be carried out with the aid of the proposed analytical procedure, in which the fundamental characteristics of sea wave statistics responsible for the structural dynamic response can be sufficiently considered. An offshore structure subject to complex ocean environment is described by a general stochastic system which embeds a group of stochastic subsystems, each characterizing a duty cycle. An effective analytical method is established by introduc ing the concept of duty strain range with a clear mathematical definition and its analytical solution which covers all possible spectral parameters. The history-dependent damage is also included in the damage model so that the overload effects can be analyzed. It should be pointed out that the whole procedure can be fully computerized such that the practical or engineering significance of varying design variables can be readily highlighted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67255/2/10.1177_105678959300200405.pd

    Baryon Decuplet to Octet Electromagnetic Transitions in Quenched and Partially Quenched Chiral Perturbation Theory

    Full text link
    We calculate baryon decuplet to octet electromagnetic transition form factors in quenched and partially quenched chiral perturbation theory. We work in the isospin limit of SU(3) flavor, up to next-to-leading order in the chiral expansion, and to leading order in the heavy baryon expansion. Our results are necessary for proper extrapolation of lattice calculations of these transitions. We also derive expressions for the case of SU(2) flavor away from the isospin limit.Comment: 16 pages, 3 figures, revtex

    The geometry of spontaneous spiking in neuronal networks

    Full text link
    The mathematical theory of pattern formation in electrically coupled networks of excitable neurons forced by small noise is presented in this work. Using the Freidlin-Wentzell large deviation theory for randomly perturbed dynamical systems and the elements of the algebraic graph theory, we identify and analyze the main regimes in the network dynamics in terms of the key control parameters: excitability, coupling strength, and network topology. The analysis reveals the geometry of spontaneous dynamics in electrically coupled network. Specifically, we show that the location of the minima of a certain continuous function on the surface of the unit n-cube encodes the most likely activity patterns generated by the network. By studying how the minima of this function evolve under the variation of the coupling strength, we describe the principal transformations in the network dynamics. The minimization problem is also used for the quantitative description of the main dynamical regimes and transitions between them. In particular, for the weak and strong coupling regimes, we present asymptotic formulas for the network activity rate as a function of the coupling strength and the degree of the network. The variational analysis is complemented by the stability analysis of the synchronous state in the strong coupling regime. The stability estimates reveal the contribution of the network connectivity and the properties of the cycle subspace associated with the graph of the network to its synchronization properties. This work is motivated by the experimental and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive performance and behavior

    Stochastic processes with finite correlation time: modeling and application to the generalized Langevin equation

    Full text link
    The kangaroo process (KP) is characterized by various forms of the covariance and can serve as a useful model of random noises. We discuss properties of that process for the exponential, stretched exponential and algebraic (power-law) covariances. Then we apply the KP as a model of noise in the generalized Langevin equation and simulate solutions by a Monte Carlo method. Some results appear to be incompatible with requirements of the fluctuation-dissipation theorem because probability distributions change when the process is inserted into the equation. We demonstrate how one can construct a model of noise free of that difficulty. This form of the KP is especially suitable for physical applications.Comment: 22 pages (RevTeX) and 4 figure

    Additive Interaction of Hyperglycemia and Albuminuria on Risk of Ischemic Stroke in Type 2 Diabetes: Hong Kong Diabetes Registry

    Get PDF
    OBJECTIVE—The study aims to test whether biological interaction between hyperglycemia and albuminuria can explain the inconsistent findings from epidemiological studies and clinical trials about effects of hyperglycemia on stroke in type 2 diabetes

    Metabolic Syndrome Predicts New Onset of Chronic Kidney Disease in 5,829 Patients With Type 2 Diabetes: A 5-year prospective analysis of the Hong Kong Diabetes Registry

    Get PDF
    OBJECTIVE—Type 2 diabetes is the leading cause of end-stage renal disease worldwide. Aside from hyperglycemia and hypertension, other metabolic factors may determine renal outcome. We examined risk associations of metabolic syndrome with new onset of chronic kidney disease (CKD) in 5,829 Chinese patients with type 2 diabetes enrolled between 1995 and 2005
    corecore