15,408 research outputs found
Viscid-inviscid interaction associated with incompressible flow past wedges at high Reynolds number
An analytical method is suggested for the study of the viscid inviscid interaction associated with incompressible flow past wedges with arbitrary angles. It is shown that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem, and the pressure can only be established from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as the boundary layer buildup, turbulent jet mixing, and recompression are individually analyzed and attached to the inviscid flow in the sense of the boundary layer concept. The interaction between the viscous and inviscid streams is properly displayed by the fact that the aforementioned discrete parameters needed for the inviscid flow are determined by the viscous flow condition at the point of reattachment. It is found that the reattachment point behaves as a saddle point singularity for the system of equations describing the recompressive viscous flow processes, and this behavior is exploited for the establishment of the overall flow field. Detailed results such as the base pressure, pressure distributions on the wedge, and the geometry of the wake are determined as functions of the wedge angle
Muonium as a shallow center in GaN
A paramagnetic muonium (Mu) state with an extremely small hyperfine parameter
was observed for the first time in single-crystalline GaN below 25 K. It has a
highly anisotropic hyperfine structure with axial symmetry along the [0001]
direction, suggesting that it is located either at a nitrogen-antibonding or a
bond-centered site oriented parallel to the c-axis. Its small ionization energy
(=< 14 meV) and small hyperfine parameter (--10^{-4} times the vacuum value)
indicate that muonium in one of its possible sites produces a shallow state,
raising the possibility that the analogous hydrogen center could be a source of
n-type conductivity in as-grown GaN.Comment: 4 figures, to be published in Phys. Rev. Letter
Micro-Raman Spectroscopy In The Undergraduate Research Laboratory
Modern materials science requires processing and characterization techniques for microscopic structures. Molecular probes such as Raman spectroscopy are some of the most viable tools, particularly if they are supplemented by imaging to obtain spatially resolved compositional information of inhomogeneous or low volume samples. In order to introduce these techniques and materials science experiments into the advanced undergraduate laboratory, we have constructed an inexpensive micro-Raman attachment, which consists of an off-the-shelf microscope and the coupling optics to an existing Raman spectrometer. The modification of the microscope, the optical coupling, and a low cost viewing system for positioning the laser excitation on the sample are described in detail. The students study molecular spectra of new materials such as diamond films, Fullerenes, and biological compounds with spatial resolution of several microns
Implementing optimal control pulse shaping for improved single-qubit gates
We employ pulse shaping to abate single-qubit gate errors arising from the
weak anharmonicity of transmon superconducting qubits. By applying shaped
pulses to both quadratures of rotation, a phase error induced by the presence
of higher levels is corrected. Using a derivative of the control on the
quadrature channel, we are able to remove the effect of the anharmonic levels
for multiple qubits coupled to a microwave resonator. Randomized benchmarking
is used to quantify the average error per gate, achieving a minimum of
0.007+/-0.005 using 4 ns-wide pulse.Comment: 4 pages, 4 figure
Comparison of antiemetic efficacy of granisetron and ondansetron in Oriental patients: a randomized crossover study.
A double-blind randomized crossover trial was performed to compare the antiemetic efficacy of two 5-HT3 receptor antagonists, granisetron and ondansetron, in Chinese patients receiving adjuvant chemotherapy (cyclophosphamide, methotrexate and 5-fluorouracil) for breast cancer. Twenty patients were randomized to receive chemotherapy with either granisetron on day 1 and ondansetron on day 8 of the first cycle followed by the reverse order in the second cycle, or vice versa. The number of vomiting episodes and the severity of nausea in the first 24 h (acute vomiting/nausea) and the following 7 days (delayed vomiting/nausea) were studied. Acute vomiting was completely prevented in 29 (72.5%) cycles with granisetron and 27 (67.5%) cycles with ondansetron, and treatment failure (>5 vomiting episodes) occurred in two (5%) cycles with each agent (P = NS). Acute nausea was completely controlled in 15 (37.5%) cycles with granisetron and 14 (35%) cycles with ondansetron, whereas severe acute nausea occurred in four (10%) cycles with each agent (P = NS). However, complete response for delayed vomiting was observed in only 21 (52.5%) cycles with granisetron and 22 (55%) cycles with ondansetron (P = NS), and delayed nausea was completely controlled in only 11 (27.5%) and ten (25%) cycles respectively (P = NS). In conclusion, both granisetron and ondansetron are effective in controlling acute nausea and vomiting in Chinese patients, with equivalent antiemetic efficacy. Control of delayed nausea and vomiting is less satisfactory
Nuclear reactor power as applied to a space-based radar mission
The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project
Randomized benchmarking and process tomography for gate errors in a solid-state qubit
We present measurements of single-qubit gate errors for a superconducting
qubit. Results from quantum process tomography and randomized benchmarking are
compared with gate errors obtained from a double pi pulse experiment.
Randomized benchmarking reveals a minimum average gate error of 1.1+/-0.3% and
a simple exponential dependence of fidelity on the number of gates. It shows
that the limits on gate fidelity are primarily imposed by qubit decoherence, in
agreement with theory.Comment: 4 pages, 4 figures, plus supplementary materia
Improving interchanges in China: the experiential phenomenon
This paper examines the development of multimodal passenger rail hubs as part of the high-speed rail (HSR) network in the People’s Republic of China (PRC). The instrumental, attitudinal and affective experience of the journey through the interchange is assessed from the user perspective. Surveys are used from three HSR stations: Beijing South, Chengdu East and Suzhou North (N = 150), representing three types of HSR stations, i.e. national capital, regional capital and sub-regional city. ‘Expected’ and ‘realised’ facilities are compared – with the difference representing the ‘disgruntlement’ factor (after Stradling et al., 2007).
The unprecedented urbanisation process currently being witnessed in the PRC, together with the rapid development of the HSR network and associated multimodal interchanges, offers much opportunity to develop a leading-edge public transport system and urban development predicated on the use of public transport. Although the importance of intermodal interchange hubs is being increasingly recognised, the journey experience through the interchange often remains poor, with problems including Wi-Fi availability, waiting and seating, the availability of door-to-door ticketing, crowdedness, access to the hub, time of travel through and waiting in the hub. MANOVA analysis and factorial (three way) MANOVA analysis are used to explore the differences between intermodal hubs, with many instrumental and particularly attitudinal and affective factors being significantly influenced by location
- …