3 research outputs found

    Investigation of charge carrier dynamics in Ti3C2Tx MXene for ultrafast photonics applications

    Full text link
    The rapid advancement of nanomaterials has paved the way for various technological breakthroughs, and MXenes, in particular, have gained substantial attention due to their unique properties such as high conductivity, broad-spectrum absorption strength, and tunable band gap. This article presents the impact of the process parameters on the structural and optical properties of Ti3C2Tx MXene for application in ultrafast dynamics. XRD along with Raman spectroscopy studies, confirmed the synthesis of a single phase from their MAX phase Ti3AlC2. The complete etching of Al and increase in the interplanar distance is also observed on centrifugation at very high speed. The ultrafast transient absorption spectroscopy used to understand the effect of centrifuge speed on the charge carrier dynamics and ultrafast spectrum of MXene displayed that the carrier lifetime is critically influenced by rotation per minute (rpm) e.g. faster decay lifetime at 10k rpm than 7k rpm. The electronic relaxation probed using the time-resolved photoluminescence (TRPL) technique exhibits an average decay time of 5.13 ns and 5.35 ns at the 7k and 10k rpm, respectively, which confirms that the optical properties of the MXene are strongly affected by the centrifuge speed. The synthesized MXene at 10k rpm typically suggests that radiative processes due to longer decay lifetime and experiences fewer nonradiative losses, resulting in enhanced luminescence properties.Comment: 21 pages , 6 figure
    corecore