3 research outputs found

    Surface pressure impact on nitrogen-dominated USP super-Earth atmospheres

    Full text link
    In this paper, we compare the chemistry and the emission spectra of nitrogen-dominated cool, warm, and hot ultra-short-period (USP) super-Earth atmospheres in and out of chemical equilibrium at various surface pressure scenarios ranging from 0.1 to 10 bar. We link the one-dimensional VULCAN chemical kinetic code, in which thermochemical kinetic and vertical transport and photochemistry are taken into account, to the one-dimensional radiative transfer model, PETITRADTRANS, to predict the emission spectra of these planets. The radiative-convective temperature-pressure profiles were computed with the HELIOS code. Then, using PANDEXO noise simulator, we explore the observability of the differences produced by disequilibrium processes with the JWST. Our grids show how different surface pressures can significantly affect the temperature profiles, the atmospheric abundances, and consequently the emission spectra of these planets. We find that the divergences due to disequilibrium processes would be possible to observe in cooler planets by targeting HCN, C2H4, and CO, and in warmer planets by targeting CH4 with HCN, using the NIRSpec and MIRI LRS JWST instruments. These species are also found to be sensitive indicators of the existence of surfaces on nitrogen-dominated USP super-Earths, providing information regarding the thickness of these atmospheres.Comment: 12 page

    TESS discovery of a sub-Neptune orbiting a mid-M dwarf TOI-2136

    Full text link
    peer reviewedWe present the discovery of TOI-2136b, a sub-Neptune planet transiting every 7.85 days a nearby M4.5V-type star, identified through photometric measurements from the TESS mission. The host star is located 3333 pc away with a radius of R∗=0.34±0.02 R⊙R_{\ast} = 0.34\pm0.02\ R_{\odot}, a mass of 0.34±0.02 M⊙0.34\pm0.02\ M_{\odot} and an effective temperature of 3342±100 K\rm 3342\pm100\ K. We estimate its stellar rotation period to be 75±575\pm5 days based on archival long-term photometry. We confirm and characterize the planet based on a series of ground-based multi-wavelength photometry, high-angular-resolution imaging observations, and precise radial velocities from CFHT/SPIRou. Our joint analysis reveals that the planet has a radius of 2.19±0.17 R⊕2.19\pm0.17\ R_{\oplus}, and a mass measurement of $6.4\pm2.4\ M_{\oplus}$. The mass and radius of TOI2136b is consistent with a broad range of compositions, from water-ice to gas-dominated worlds. TOI-2136b falls close to the radius valley for low-mass stars predicted by the thermally driven atmospheric mass loss models, making it an interesting target for future studies of its interior structure and atmospheric properties

    TESS discovery of a sub-Neptune orbiting a mid-M dwarf TOI-2136

    Get PDF
    We present the discovery of TOI-2136 b, a sub-Neptune planet transiting a nearby M4.5V-type star every 7.85 days, identified through photometric measurements from the TESS mission. The host star is located 33 pc away with a radius of R* = 0.34 ± 0.02 R⊙, a mass of 0.34 ± 0.02 M⊙ and an effective temperature of 3342 ± 100 K. We estimate its stellar rotation period to be 75 ± 5 days based on archival long-term photometry. We confirm and characterize the planet based on a series of ground-based multi-wavelength photometry, high-angular-resolution imaging observations, and precise radial velocities from CFHT/SPIRou. Our joint analysis reveals that the planet has a radius of 2.20 ± 0.17 R⊕ and a mass of 6.4 ± 2.4 M⊕. The mass and radius of TOI-2136 b is consistent with a broad range of compositions, from water-ice to gas-dominated worlds. TOI-2136 b falls close to the radius valley for M dwarfs predicted by thermally driven atmospheric mass loss models, making it an interesting target for future studies of its interior structure and atmospheric properties
    corecore