2 research outputs found

    Ion irradiation-induced sinking of Ag nanocubes into substrates

    Full text link
    Ion irradiation can cause burrowing of nanoparticles in substrates, strongly depending on the material properties and irradiation parameters. In this study, we demonstrate that the sinking process can be accomplished with ion irradiation of cube-shaped Ag nanoparticles on top of silicon; how ion channeling affects the sinking rate; and underline the importance of the amorphous state of the substrate upon ion irradiation. Based on our experimental findings, the sinking process is described as being driven by capillary forces enabled by ion-induced plastic flow of the substrate.Comment: the manuscript has 25 pages and 6 figure

    Investigation of surface orientation dependent sputtering of Ag

    No full text
    Sputtering of metal surfaces can be both a beneficial phenomenon, for instance in the coating industry, or an undesired side-effect, for instant materials subjected to irradiation. While the average sputtering yields are well known in common metals, recent studies have shown that the yields can depend on the crystallographic orientation of the surface much stronger than commonly appreciated. In this study, we investigate by computational means, molecular dynamics, the sputtering of single crystalline Ag surfaces under various incoming energies. The results at low and high energy are compared to experimental results for single crystalline Ag nanocubes of different orientations. We observe strong differences between the sputtering yields of different surface directions and ion energies. We analyze the results in terms of the atom cluster size of the sputtered materials, and show that the cluster size distribution is a key factor to understand the correspondence between simulations and experiments. At low energies mainly single atoms are sputtered, whereas at higher energies the sputtered material is mainly in atom clusters.Peer reviewe
    corecore