544 research outputs found

    Self-Consistency of Thermal Jump Trajectories

    Get PDF
    It is problematic to interpret the quantum jumps of an atom interacting with thermal light in terms of counts at detectors monitoring the atom's inputs and outputs. As an alternative, we develop an interpretation based on a self-consistency argument. We include one mode of the thermal field in the system Hamiltonian and describe its interaction with the atom by an entangled quantum state while assuming that the other modes induce quantum jumps in the usual fashion. In the weak-coupling limit, the photon number expectation of the selected mode is also seen to execute quantum jumps, although more generally, for stronger coupling, Rabi oscillations are observed; the equilibrium photon number distribution is a Bose-Einstein distribution. Each mode may be viewed in isolation in a similar fashion, and summing over their weak-coupling jump rates returns the net jump rates for the atom assumed at the outset

    A Study Of The Concepts Of Worship Held By Korean Seventh-day Adventist Youth Undergoing Cultural Shift In The United States

    Get PDF
    The purpose of this study was to develop a theology of corporate worship and to study the concepts of worship held by the youth of a specific ethnic group who are moving away from their native cultural background, and will inevitably be exposed to the new culture. The researcher of this project intends to apply these theological concepts of worship to a specifically situated group of youth, namely representatives of the second generation of the Korean Seventh-day Adventist churches in the United States. This research and.investigation was carried out in a selected number of Korean Seventh-day Adventist churches in the United States. The study consists of two parts. Part I is in the form of a theological position paper stating the author\u27s grounding conviction with respect to worship. Part II, then, proceeds to examine the concepts of worship held by Korean Seventh-day Adventist youth undergoing cultural shift in the United States

    Challenge of Psychiatric Social Work With the Deaf

    Get PDF
    Non

    Measurement of Zeta Potential of Polysaccharides and Fabricating Polysaccharide-polysaccharide Nanotubes

    Get PDF
    Biopolymer nanotubes (BNTs) are two-open ended cylindrical structures which can be used for nanodevices, medicine, and biology. Especially, fabricating BNTs using proteins is suitable for biological and biomedical applications due to their safety and biocompatibility. This study has been focused on fabricating BNTs using polysaccharides which have been proved to be safe by the FDA and used in food applications. The zeta-potential, surface charge, of different polysaccharides was measured to find the region of stability and isoelectric point from pH 4 to 11 by DLS. Next, xanthan and chitosan have been selected for fabricating BNTs because of their stability and dispersibility compared to the other polysaccharides. Two polysaccharide solutions were adjusted to pH 4 where the charge difference was the largest; and BNTs were fabricated at different mass ratio using a template assisted layer-by-layer method. Then, SEM images were taken to visualize the nanotubes. As a result, some nanotubes were seen in the SEM images; however, they did not have the optimal well defined form yet. Also, there were too many clusters instead of individual clear nanotubes. The interaction and the size of the proteins might be too large, so the polysaccharides tended to form globular structures instead of nanotubes. To fabricate BNTs, xanthan will be hydrolyzed to reduce size, and the mass ratio would be also reduced to decrease the interaction between two polysaccharides

    Intact glycopeptide analysis of recombinant protein from CHO cells

    Get PDF
    The quality of recombinant glycoproteins including antibodies and other biologics is dictated by their glycan profiles. What is missing is how to analyze these glycans rapidly for process improvement and control applications. Conventional glycan analysis involves the release of glycans, which rarely captures the glycan site-specific information. Intact glycopeptide analysis in which glycans are retained on the peptide provides insights into the glycan structure and the glycosylation site information simultaneously. This information can reveal additional details about site occupancy and cellular glycosylation of proteins. Avoiding glycan release and some modifications and labeling steps in our intact glycopeptide analysis can result in a shorter sample preparation time than conventional glycan analysis methods. Compared to peptide mapping using LC-MS to decipher protein amino acid sequence in proteomics, this analysis focuses on glycopeptide profiling following protease-digestion. With the aid of LC-MS/MS, we are able to obtain targeted glycoprotein sequence information, glycan profiles and glycan distribution at specific sites. Here we present the application of glycopeptide analysis for model AMBIC and other proteins from CHO-GS and CHO-K1 cells. The site-specific glycosylation patterns of our model proteins EPO-Fc and EPO are characterized. Further, we examine the impact of media formulation and additives on the glycan profiles for these proteins. Please click Additional Files below to see the full abstract
    corecore