898 research outputs found

    Predicting solar cycle 24 with a solar dynamo model

    Get PDF
    Whether the upcoming cycle 24 of solar activity will be strong or not is being hotly debated. The solar cycle is produced by a complex dynamo mechanism. We model the last few solar cycles by `feeding' observational data of the Sun's polar magnetic field into our solar dynamo model. Our results fit the observed sunspot numbers of cycles 21-23 extremely well and predict that cycle~24 will be about 35% weaker than cycle~23.Comment: 10 pages 1 table 3 figure

    The origin of grand minima in the sunspot cycle

    Full text link
    One of the most striking aspects of the 11-year sunspot cycle is that there have been times in the past when some cycles went missing, a most well-known example of this being the Maunder minimum during 1645-1715. Analyses of cosmogenic isotopes (C14 and Be10) indicated that there were about 27 grand minima in the last 11,000 yr, implying that about 2.7% of the solar cycles had conditions appropriate for forcing the Sun into grand minima. We address the question how grand minima are produced and specifically calculate the frequency of occurrence of grand minima from a theoretical dynamo model. We assume that fluctuations in the poloidal field generation mechanism and the meridional circulation produce irregularities of sunspot cycles. Taking these fluctuations to be Gaussian and estimating the values of important parameters from the data of last 28 solar cycles, we show from our flux transport dynamo model that about 1-4% of the sunspot cycles may have conditions suitable for inducing grand minima.Comment: Accepted for publication in Physical Review Letter

    Towards A Mean-Field Formulation Of The Babcock-Leighton Type Solar Dynamo. I. Alpha Coefficient Versus Durney's Double Ring Approach

    Get PDF
    We develop a model of the solar dynamo in which, on the one hand, we follow the Babcock-Leighton approach to include surface processes like the production of poloidal field from the decay of active regions, and, on the other hand, we attempt to develop a mean field theory that can be studied in quantitative detail. One of the main challenges in developing such models is to treat the buoyant rise of toroidal field and the production of poloidal field from it near the surface. We build up a dynamo model with two contrasting methods of treating buoyancy. In one method, we incorporate the generation of the poloidal field near the solar surface by Durney's procedure of double ring eruption. In the second method, the poloidal field generation is treated by a positive alpha-effect concentrated near the solar surface, coupled with an algorithm for handling buoyancy. The two methods are found to give qualitatively similar results.Comment: 32 pages, 27 figures, uses aastex.cls and epsfig.st

    Fluctuations in the Alpha-Effect and Grand Solar Minima

    Full text link
    Parameters of a special kind of \alpha-effect known in dynamo theory as the Babcock-Leighton mechanism are estimated using the data of sunspot catalogs. The estimates evidence the presence of the Babcock-Leighton \alpha-effect on the Sun. Fluctuations of the \alpha-effect are also estimated. The fluctuation amplitude appreciably exceeds the mean value, and the characteristic time for the fluctuations is comparable to the period of the solar rotation. Fluctuations with the parameters found are included in a numerical model for the solar dynamo. Computations show irregular changes in the amplitudes of the magnetic cycles on time scales of centuries and millennia. The calculated statistical characteristics of the grand solar minima and maxima agree with the data on solar activity over the Holocene.Comment: To appear in Astronomy Reports, 20 pages, 9 figure

    Reply to comments of Dikpati et al

    Full text link
    We present here our response to Dikpati et al.'s criticism of our recent solar dynamo model.Comment: 8 pages, 2 figure

    Solar activity forecast with a dynamo model

    Get PDF
    Although systematic measurements of the solar polar magnetic field exist only from mid 1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high, we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.Comment: 17 pages, 18 figures, submitted to MNRA

    The Waldmeier Effect in Sunspot Cycles

    Full text link
    We discuss two aspects of the Waldmeier Effect, namely (1) the rise times of sunspot cycles are anti-correlated to their strengths (WE1) and (2) the rates of rise of the cycles are correlated to their strengths (WE2). From analysis of four different data sets we conclude that both WE1 and WE2 exist in all the data sets. We study these effects theoretically by introducing suitable stochastic fluctuations in our regular solar dynamo model.Comment: Magnetic Coupling between the Interior and Atmosphere of the Sun; Astrophysics and Space Science Proceeding
    corecore