1,493 research outputs found

    A self-adaptive artificial bee colony algorithm with local search for TSK-type neuro-fuzzy system training

    Full text link
    Β© 2019 IEEE. In this paper, we introduce a self-adaptive artificial bee colony (ABC) algorithm for learning the parameters of a Takagi-Sugeno-Kang-type (TSK-type) neuro-fuzzy system (NFS). The proposed NFS learns fuzzy rules for the premise part of the fuzzy system using an adaptive clustering method according to the input-output data at hand for establishing the network structure. All the free parameters in the NFS, including the premise and the following TSK-type consequent parameters, are optimized by the modified ABC (MABC) algorithm. Experiments involve two parts, including numerical optimization problems and dynamic system identification problems. In the first part of investigations, the proposed MABC compares to the standard ABC on mathematical optimization problems. In the remaining experiments, the performance of the proposed method is verified with other metaheuristic methods, including differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO) and standard ABC, to evaluate the effectiveness and feasibility of the system. The simulation results show that the proposed method provides better approximation results than those obtained by competitors methods

    Exercise-Induced Changes in Exhaled NO Differentiates Asthma With or Without Fixed Airway Obstruction From COPD With Dynamic Hyperinflation.

    Get PDF
    Asthmatic patients with fixed airway obstruction (FAO) and patients with chronic obstructive pulmonary disease (COPD) share similarities in terms of irreversible pulmonary function impairment. Exhaled nitric oxide (eNO) has been documented as a marker of airway inflammation in asthma, but not in COPD. To examine whether the basal eNO level and the change after exercise may differentiate asthmatics with FAO from COPD, 27 normal subjects, 60 stable asthmatics, and 62 stable COPD patients were studied. Asthmatics with FAO (nβ€Š=β€Š29) were defined as showing a postbronchodilator FEV(1)/forced vital capacity (FVC) ≀70% and FEV(1) less than 80% predicted after inhaled salbutamol (400β€ŠΞΌg). COPD with dynamic hyperinflation (nβ€Š=β€Š31) was defined as a decrease in inspiratory capacity (Ξ”IC%) after a 6 minute walk test (6MWT). Basal levels of eNO were significantly higher in asthmatics and COPD patients compared to normal subjects. The changes in eNO after 6MWT were negatively correlated with the percent change in IC (rβ€Š=β€Šβˆ’0.380, nβ€Š=β€Š29, Pβ€Š=β€Š0.042) in asthmatics with FAO. Their levels of basal eNO correlated with the maximum mid-expiratory flow (MMEF % predicted) before and after 6MWT. In COPD patients with air-trapping, the percent change of eNO was positively correlated to Ξ”IC% (rsβ€Š=β€Š0.404, nβ€Š=β€Š31, Pβ€Š=β€Š0.024). We conclude that asthma with FAO may represent residual inflammation in the airways, while dynamic hyperinflation in COPD may retain NO in the distal airspace. eNO changes after 6MWT may differentiate the subgroups of asthma or COPD patients and will help toward delivery of individualized therapy for airflow obstruction

    A method to enhance the deep learning in an aerial image

    Full text link
    Β© 2017 IEEE. In this paper, we propose a kind of pre-processing method which can be applied to the depth learning method for the characteristics of aerial image. This method combines the color and spatial information to do the quick background filtering. In addition to increase execution speed, but also to reduce the rate of false positives

    Encoding of physics concepts: Concreteness and presentation modality reflected by human brain dynamics

    Get PDF
    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class. Β© 2012 Lai et al

    Robust Facial Alignment for Face Recognition

    Full text link
    Β© 2017, Springer International Publishing AG. This paper proposes a robust real-time face recognition system that utilizes regression tree based method to locate the facial feature points. The proposed system finds the face region which is suitable to perform the recognition task by geometrically analyses of the facial expression of the target face image. In real-world facial recognition systems, the face is often cropped based on the face detection techniques. The misalignment is inevitably occurred due to facial pose, noise, occlusion, and so on. However misalignment affects the recognition rate due to sensitive nature of the face classifier. The performance of the proposed approach is evaluated with four benchmark databases. The experiment results show the robustness of the proposed approach with significant improvement in the facial recognition system on the various size and resolution of given face images

    Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition

    Get PDF
    Showing A quantification of GFP-positive cells in the lung after intravenous injection of MKPCs in five-sixths nephrectomized mice (y axis shows the number of cells, while the x axis (FL1-H) shows the fluorescence intensity; M1 is the area of GFP-positive cells) and B immunohistochemistry of the lung after intravenous injection of MKPCs into a mouse that underwent five-sixths nephrectomy. Few GFP positive cells were found in the lung at the first day but there were no GFP-positive cells at week 14. (TIFF 2253 kb

    A motor imagery based brain-computer interface system via swarm-optimized fuzzy integral and its application

    Full text link
    Β© 2016 IEEE. A brain-computer interface (BCI) system provides a convenient means of communication between the human brain and a computer, which is applied not only to healthy people but also for people that suffer from motor neuron diseases (MNDs). Motor imagery (MI) is one well-known basis for designing Electroencephalography (EEG)-based real-life BCI systems. However, EEG signals are often contaminated with severe noise and various uncertainties, imprecise and incomplete information streams. Therefore, this study proposes spectrum ensemble based on swam-optimized fuzzy integral for integrating decisions from sub-band classifiers that are established by a sub-band common spatial pattern (SBCSP) method. Firstly, the SBCSP effectively extracts features from EEG signals, and thereby the multiple linear discriminant analysis (MLDA) is employed during a MI classification task. Subsequently, particle swarm optimization (PSO) is used to regulate the subject-specific parameters for assigning optimal confidence levels for classifiers used in the fuzzy integral during the fuzzy fusion stage of the proposed system. Moreover, BCI systems usually tend to have complex architectures, be bulky in size, and require time-consuming processing. To overcome this drawback, a wireless and wearable EEG measurement system is investigated in this study. Finally, in our experimental result, the proposed system is found to produce significant improvement in terms of the receiver operating characteristic (ROC) curve. Furthermore, we demonstrate that a robotic arm can be reliably controlled using the proposed BCI system. This paper presents novel insights regarding the possibility of using the proposed MI-based BCI system in real-life applications

    Robust Feature-Based Automated Multi-View Human Action Recognition System

    Full text link
    Β© 2013 IEEE. Automated human action recognition has the potential to play an important role in public security, for example, in relation to the multiview surveillance videos taken in public places, such as train stations or airports. This paper compares three practical, reliable, and generic systems for multiview video-based human action recognition, namely, the nearest neighbor classifier, Gaussian mixture model classifier, and the nearest mean classifier. To describe the different actions performed in different views, view-invariant features are proposed to address multiview action recognition. These features are obtained by extracting the holistic features from different temporal scales which are modeled as points of interest which represent the global spatial-temporal distribution. Experiments and cross-data testing are conducted on the KTH, WEIZMANN, and MuHAVi datasets. The system does not need to be retrained when scenarios are changed which means the trained database can be applied in a wide variety of environments, such as view angle or background changes. The experiment results show that the proposed approach outperforms the existing methods on the KTH and WEIZMANN datasets
    • …
    corecore