20,603 research outputs found

    Momentum Distribution for Bosons with Positive Scattering Length in a Trap

    Full text link
    The coordinate-momentum double distribution function ρ(r,p)d3rd3p\rho ({\bf r}, {\bf p}) d^{3}rd^{3}p is calculated in the local density approximation for bosons with positive scattering length aa in a trap. The calculation is valid to the first order of aa. To clarify the meaning of the result, it is compared for a special case with the double distribution function ρwd3rd3p\rho_{w}d^{3} rd^{3}p of Wigner.Comment: Latex fil

    Stochastic self-assembly of incommensurate clusters

    Full text link
    We examine the classic problem of homogeneous nucleation and growth by deriving and analyzing a fully discrete stochastic master equation. Upon comparison with results obtained from the corresponding mean-field Becker-D\"{o}ring equations we find striking differences between the two corresponding equilibrium mean cluster concentrations. These discrepancies depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass incommensurability arises, a single remainder particle can "emulsify" or "disperse" the system by significantly broadening the mean cluster size distribution. This finite-sized broadening effect is periodic in the total mass of the system and can arise even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. For such finite ratios we show that homogeneous nucleation in the limit of large, closed systems is not accurately described by classical mean-field mass-action approaches.Comment: 5 pages, 4 figures, 1 tabl

    Surface roughness during depositional growth and sublimation of ice crystals

    Get PDF
    Full version of an earlier discussion paper (Chou et al. 2018)Ice surface properties can modify the scattering properties of atmospheric ice crystals and therefore affect the radiative properties of mixed-phase and cirrus clouds. The Ice Roughness Investigation System (IRIS) is a new laboratory setup designed to investigate the conditions under which roughness develops on single ice crystals, based on their size, morphology and growth conditions (relative humidity and temperature). Ice roughness is quantified through the analysis of speckle in 2-D light-scattering patterns. Characterization of the setup shows that a supersaturation of 20 % with respect to ice and a temperature at the sample position as low as-40 °C could be achieved within IRIS. Investigations of the influence of humidity show that higher supersaturations with respect to ice lead to enhanced roughness and irregularities of ice crystal surfaces. Moreover, relative humidity oscillations lead to gradual ratcheting-up of roughness and irregularities, as the crystals undergo repeated growth-sublimation cycles. This memory effect also appears to result in reduced growth rates in later cycles. Thus, growth history, as well as supersaturation and temperature, influences ice crystal growth and properties, and future atmospheric models may benefit from its inclusion in the cloud evolution process and allow more accurate representation of not just roughness but crystal size too, and possibly also electrification properties.Peer reviewe

    ^{59}Co NMR evidence for charge ordering below T_{CO}\sim 51 K in Na_{0.5}CoO_2

    Full text link
    The CoO2_{2} layers in sodium-cobaltates Nax_{x}CoO2_{2} may be viewed as a spin S=1/2S=1/2 triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high TcT_{c} cuprates. We will present unequivocal 59^{59}Co NMR evidence that below TCO51KT_{CO}\sim51 K, the insulating ground state of the itinerant antiferromagnet Na0.5_{0.5}CoO2_{2} (TN86KT_{N}\sim 86 K) is induced by charge ordering.Comment: Phys. Rev. Lett. 100 (2008), in press. 4 figure

    Counter-rotating Accretion Disks

    Get PDF
    We consider accretion disks consisting of counter-rotating gaseous components with an intervening shear layer. Configurations of this type may arise from the accretion of newly supplied counter-rotating gas onto an existing co-rotating gas disk. For simplicity we consider the case where the gas well above the disk midplane is rotating with angular rate +Ω+\Omega and that well below has the same properties but is rotating with rate Ω-\Omega. Using the Shakura-Sunyaev alpha turbulence model, we find self-similar solutions where a thin (relative to the full disk thickness) equatorial layer accretes very rapidly, essentially at free-fall speed. As a result the accretion speed is much larger than it would be for an alpha disk rotating in one direction. Counter-rotating accretion disks may be a transient stage in the formation of counter-rotating galaxies and in the accretion of matter onto compact objects.Comment: 7 pages, 3 figures, aas2pp4.sty, submitted to Ap

    Suppression of the commensurate spin-Peierls state in Sc-doped TiOCl

    Full text link
    We have performed x-ray scattering measurements on single crystals of the doped spin-Peierls compound Ti(1-x)Sc(x)OCl (x = 0, 0.01, 0.03). These measurements reveal that the presence of non-magnetic dopants has a profound effect on the unconventional spin-Peierls behavior of this system, even at concentrations as low as 1%. Sc-doping suppresses commensurate fluctuations in the pseudogap and incommensurate spin-Peierls phases of TiOCl, and prevents the formation of a long-range ordered spin-Peierls state. Broad incommensurate scattering develops in the doped compounds near Tc2 ~ 93 K, and persists down to base temperature (~ 7 K) with no evidence of a lock-in transition. The width of the incommensurate dimerization peaks indicates short correlation lengths on the order of ~ 12 angstroms below Tc2. The intensity of the incommensurate scattering is significantly reduced at higher Sc concentrations, indicating that the size of the associated lattice displacement decreases rapidly as a function of doping.Comment: 7 pages, 5 figure

    Anomalous electronic Raman scattering in Na_xCoO_2 H_2O

    Get PDF
    Raman scattering experiments on Na_{x}CoO_2 yH_2O single crystals show a broad electronic continuum with a pronounced peak around 100 cm-1 and a cutoff at approximately 560 cm-1over a wide range of doping levels. The electronic Raman spectra in superconducting and non-superconducting samples are similar at room temperature, but evolve in markedly different ways with decreasing temperature. For superconducting samples, the low-energy spectral weight is depleted upon cooling below T* sim 150K, indicating a opening of a pseudogap that is not present in non-superconducting materials. Weak additional phonon modes observed below T* suggest that the pseudogap is associated with charge ordering.Comment: 5 pages, 4 figures, for further information see www.peter-lemmens.d

    EXITE2 Observation of the SIGMA Source GRS 1227+025

    Full text link
    We report the EXITE2 hard X-ray imaging of the sky around 3C273. A 2h observation on May 8, 1997, shows a \sim260 mCrab source detected at 4σ\sim4\sigma in each of two bands (50-70 and 70-93 keV) and located \sim30' from 3C273 and consistent in position with the SIGMA source GRS1227+025. The EXITE2 spectrum is consistent with a power law with photon index 3 and large low energy absorption, as indicated by the GRANAT/SIGMA results. No source was detected in more sensitive followup EXITE2 observations in 2000 and 2001 with 3σ\sigma upper limits of 190 and 65 mCrab, respectively. Comparison with the flux detected by SIGMA shows the source to be highly variable, suggesting it may be non-thermal and beamed and thus the first example of a ``type 2'' (absorbed) Blazar. Alternatively it might be (an unprecedented) very highly absorbed binary system undergoing accretion disk instability outbursts, possibly either a magnetic CV, or a black hole X-ray nova.Comment: 12 pages, 4 figures, accepted for publication in Ap
    corecore