19,216 research outputs found
Momentum Distribution for Bosons with Positive Scattering Length in a Trap
The coordinate-momentum double distribution function is calculated in the local density approximation for bosons with
positive scattering length in a trap. The calculation is valid to the first
order of . To clarify the meaning of the result, it is compared for a
special case with the double distribution function of
Wigner.Comment: Latex fil
In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD
In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectrics having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writing capability, complex device structures like three terminal hybrid semiconductor/superconductor transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray deffraction, electron microscopy, and energy dispersive x-ray analysis are discussed
In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD
In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectric having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writting capability, complex device structures like three-terminal hybrid semiconductors/superconductors transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray defraction, electron microscopy, and energy dispersive x-ray analysis are discussed
Size dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charges on spectral diffusion
Making use of droplet epitaxy, we systematically controlled the height of
self-assembled GaAs quantum dots by more than one order of magnitude. The
photoluminescence spectra of single quantum dots revealed the strong dependence
of the spectral linewidth on the dot height. Tall dots with a height of ~30 nm
showed broad spectral peaks with an average width as large as ~5 meV, but
shallow dots with a height of ~2 nm showed resolution-limited spectral lines
(<120 micro eV). The measured height dependence of the linewidths is in good
agreement with Stark coefficients calculated for the experimental shape
variation. We attribute the microscopic source of fluctuating electric fields
to the random motion of surface charges at the vacuum-semiconductor interface.
Our results offer guidelines for creating frequency-locked photon sources,
which will serve as key devices for long-distance quantum key distribution.Comment: 6 pages, 6 figures; updated figs and their description
Shubnikov de Haas effect in the metallic state of NaCoO
Shubnikov de Haas oscillations for two well defined frequencies,
corresponding respectively to areas of 0.8 and 1.36% of the first Brillouin
zone (FBZ), were observed in single crystals of NaCoO. The
existence of Na superstructures in NaCoO, coupled with this
observation, suggests the possibility that the periods are due to the
reconstruction of the large Fermi surface around the point. An
alternative interpretation in terms of the long sought-after
pockets is also considered but found to be incompatible
with existing specific heat data.Comment: 5 pages 4 figure
Fast Predictive Image Registration
We present a method to predict image deformations based on patch-wise image
appearance. Specifically, we design a patch-based deep encoder-decoder network
which learns the pixel/voxel-wise mapping between image appearance and
registration parameters. Our approach can predict general deformation
parameterizations, however, we focus on the large deformation diffeomorphic
metric mapping (LDDMM) registration model. By predicting the LDDMM
momentum-parameterization we retain the desirable theoretical properties of
LDDMM, while reducing computation time by orders of magnitude: combined with
patch pruning, we achieve a 1500x/66x speed up compared to GPU-based
optimization for 2D/3D image registration. Our approach has better prediction
accuracy than predicting deformation or velocity fields and results in
diffeomorphic transformations. Additionally, we create a Bayesian probabilistic
version of our network, which allows evaluation of deformation field
uncertainty through Monte Carlo sampling using dropout at test time. We show
that deformation uncertainty highlights areas of ambiguous deformations. We
test our method on the OASIS brain image dataset in 2D and 3D
Mathematical models for vulnerable plaques
A plaque is an accumulation and swelling in the artery walls and typically consists of cells, cell debris, lipids, calcium deposits and fibrous connective tissue. A person is likely to have many plaques inside his/her body even if they are healthy. However plaques may become "vulnerable", "high-risk" or "thrombosis-prone" if the person engages in a high-fat diet and does not exercise regularly.
In this study group, we proposed two mathematical models to describe plaque growth and rupture.
The first model is a mechanical one that approximately treats the plaque as an inflating elastic balloon. In this model, the pressure inside the core increases and then decreases suggesting that plaque stabilization and prevention of rupture is possible.
The second model is a biochemical one that focuses on the role of MMPs in degrading the fibrous plaque cap. The cap stress, MMP concentration, plaque volume and cap thickness are coupled together in a system of phenomenological equations. The equations always predict an eventual rupture since the volume, stresses and MMP concentrations generally grow without bound. The main weakness of the model is that many of the important parameters that control the behavior of the plaque are unknown.
The two simple models suggested by this group could serve as a springboard for more realistic theoretical studies. But most importantly, we hope they will motivate more experimental work to quantify some of the important mechanical and biochemical properties of vulnerable plaques
Hole Doping Effects on Spin-gapped Na2Cu2TeO6 via Topochemical Na Deficiency
We report the magnetic susceptibility and NMR studies of a spin-gapped
layered compound
Na2Cu2TeO6 (the spin gap 250 K), the hole doping effect on the
Cu2TeO6 plane via a topochemical Na deficiency by soft chemical treatment, and
the static spin vacancy effect by nonmagnetic impurity Zn substitution for Cu.
A finite Knight shift at the Te site was observed for pure
Na2Cu2TeO6.
The negative hyperfine coupling constant is an evidence for
the existence of a superexchange pathway of the Cu-O-Te-O-Cu bond. It turned
out that both the Na deficiency and Zn impurities induce a Curie-type magnetism
in the uniform spin susceptibility in an external magnetic field of 1 T, but
only the Zn impurities enhance the low-temperature Na nuclear
spin-lattice relaxation rate whereas the Na deficiency suppresses it. A spin
glass behavior was observed for the Na-deficient samples but not for the
Zn-substituted samples. The dynamics of the unpaired moments of the doped holes
are different from that of the spin vacancy in the spin-gapped Cu2TeO6 planes.Comment: 4 pages, 7 figures, to be published in J. Phys. Soc. Jpn. Vol. 75,
No. 8 (2006
- …