26,337 research outputs found

    ATM optical contamination study - Reaction control system rocket engine space plume flow fields Interim report

    Get PDF
    Apollo telescopic experiment contamination by space vehicle exhaust product

    Feasibility and concept study to convert the NASA/AMES vertical motion simulator to a helicopter simulator

    Get PDF
    The conceptual design for converting the vertical motion simulator (VMS) to a multi-purpose aircraft and helicopter simulator is presented. A unique, high performance four degrees of freedom (DOF) motion system was developed to permanently replace the present six DOF synergistic system. The new four DOF system has the following outstanding features: (1) will integrate with the two large VMS translational modes and their associated subsystems; (2) can be converted from helicopter to fixed-wing aircraft simulation through software changes only; (3) interfaces with an advanced cab/visual display system of large dimensions; (4) makes maximum use of proven techniques, convenient materials and off-the-shelf components; (5) will operate within the existing building envelope without modifications; (6) can be built within the specified weight limit and avoid compromising VMS performance; (7) provides maximum performance with a minimum of power consumption; (8) simple design minimizes coupling between motions and maximizes reliability; and (9) can be built within existing budgetary figures

    Models of dynamic extraction of lipid tethers from cell membranes

    Full text link
    When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this processes by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that they can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers.Comment: 16 pages, 7 figure

    Long-term X-ray Variability of Ultraluminous X-ray Sources

    Get PDF
    Long-term X-ray modulations on timescales from tens to hundreds of days have been widely studied for X-ray binaries located in the Milky Way and the Magellanic Clouds. For other nearby galaxies, only the most luminous X-ray sources can be monitored with dedicated observations. We here present the first systematic study of long-term X-ray variability of four ultraluminous X-ray sources (ESO 243-49 HLX-1, Holmberg IX X-1, M81 X-6, and NGC 5408 X-1) monitored with Swift. By using various dynamic techniques to analyse their light curves, we find several interesting low-frequency quasi-periodicities. Although the periodic signals may not represent any stable orbital modulations, these detections reveal that such long-term regular patterns may be related to superorbital periods and structure of the accretion discs. In particular, we show that the outburst recurrence time of ESO 243-49 HLX-1 varies over time and suggest that it may not be the orbital period. Instead, it may be due to some kinds of precession, and the true binary period is expected to be much shorter.Comment: 15 pages, 8 figures; accepted for publication in MNRA

    Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials

    Full text link
    We present four types of infinitely many exactly solvable Fokker-Planck equations, which are related to the newly discovered exceptional orthogonal polynomials. They represent the deformed versions of the Rayleigh process and the Jacobi process.Comment: 17 pages, 4 figure

    Possible spin-orbit driven spin-liquid ground state in the double perovskite phase of Ba3YIr2O9

    Get PDF
    We report the structural transformation of hexagonal Ba3YIr2O9 to a cubic double perovskite form (stable in ambient conditions) under an applied pressure of 8GPa at 1273K. While the ambient pressure (AP) synthesized sample undergoes long-range magnetic ordering at 4K, the high pressure(HP) synthesized sample does not order down to 2K as evidenced from our susceptibility, heat capacity and nuclear magnetic resonance (NMR) measurements. Further, for the HP sample, our heat capacity data have the form gamma*T+beta*T3 in the temperature (T) range of 2-10K with the Sommerfeld coefficient gamma=10mJ/mol-Ir K2. The 89Y NMR shift has no T-dependence in the range of 4-120K and its spin-lattice relaxation rate varies linearly with T in the range of 8-45K (above which it is T-independent). Resistance measurements of both the samples confirm that they are semiconducting. Our data provide evidence for the formation of a 5d based, gapless, quantum spin-liquid (QSL) in the cubic (HP) phase of Ba3YIr2O9. In this picture, the T term in the heat capacity and the linear variation of 89Y 1/T1 arises from excitations out of a spinon Fermi surface. Our findings lend credence to the theoretical suggestion [G. Chen, R. Pereira, and L. Balents, Phys. Rev. B 82, 174440 (2010)] that strong spin-orbit coupling can enhance quantum fluctuations and lead to a QSL state in the double perovskite lattice.Comment: 6 pages 5 figure

    Local moment, itinerancy and deviation from Fermi liquid behavior in Nax_xCoO2_2 for 0.71x0.840.71 \leq x \leq 0.84

    Full text link
    Here we report the observation of Fermi surface (FS) pockets via the Shubnikov de Haas effect in Nax_xCoO2_2 for x=0.71x = 0.71 and 0.84, respectively. Our observations indicate that the FS expected for each compound intersects their corresponding Brillouin zones, as defined by the previously reported superlattice structures, leading to small reconstructed FS pockets, but only if a precise number of holes per unit cell is \emph{localized}. For 0.71x<0.750.71 \leq x < 0.75 the coexistence of itinerant carriers and localized S=1/2S =1/2 spins on a paramagnetic triangular superlattice leads at low temperatures to the observation of a deviation from standard Fermi-liquid behavior in the electrical transport and heat capacity properties, suggesting the formation of some kind of quantum spin-liquid ground state.Comment: 4 pages, 4 figure

    Precision Enhancement of 3D Surfaces from Multiple Compressed Depth Maps

    Full text link
    In texture-plus-depth representation of a 3D scene, depth maps from different camera viewpoints are typically lossily compressed via the classical transform coding / coefficient quantization paradigm. In this paper we propose to reduce distortion of the decoded depth maps due to quantization. The key observation is that depth maps from different viewpoints constitute multiple descriptions (MD) of the same 3D scene. Considering the MD jointly, we perform a POCS-like iterative procedure to project a reconstructed signal from one depth map to the other and back, so that the converged depth maps have higher precision than the original quantized versions.Comment: This work was accepted as ongoing work paper in IEEE MMSP'201
    corecore