37 research outputs found
Preparation Method of Co 3
Co3O4 nanoparticles were fabricated by a novel, facile, and environment-friendly carbon-assisted method using degreasing cotton. Structural and morphological characterizations were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The component of the sample obtained at different temperatures was measured by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Nitrogen adsorption and desorption isotherms were utilized to reveal the specific surface areas. The formation mechanism of Co3O4 nanoparticles was also proposed, demonstrating that the additive degreasing cotton played an indispensable role in the process of synthesizing the sample. The resultant Co3O4 sample calcined at 600°C exhibited superior electrochemical performance with better specific capacitance and long-term cycling life, due to its high specific surface areas and pores structures. Additionally, it has been proved that this facile synthetic strategy can be extended to produce other metal oxide materials (e.g., Fe3O4). As a consequence, the carbon-assisted method using degreasing cotton accompanied a promising prospect for practical application
Recommended from our members
Enhancing the electric charge output in LiNbO3-based piezoelectric pressure sensors.
Lithium niobate (LiNbO3) single crystals are a kind of ferroelectric material with a high piezoelectric coefficient and Curie temperature, which is suitable for the preparation of piezoelectric pressure sensors. However, there is little research reporting on the use of LiNbO3 single crystals to prepare piezoelectric pressure sensors. Therefore, in this paper, LiNbO3 was used to prepare piezoelectric pressure sensors to study the feasibility of using LiNbO3 single crystals as a sensitive material for piezoelectric pressure sensors. In addition, chemical mechanical polishing (CMP) technology was used to prepare LiNbO3 crystals with different thicknesses to study the influence of these LiNbO3 crystals on the electric charge output of the sensors. The results showed that the sensitivity of a 300 μm sample (0.218 mV kPa-1) was about 1.23 times that of a 500 μm sample (0.160 mV kPa-1). Low-temperature polymer heterogeneous integration and oxygen plasma activation technologies were used to realize the heterogeneous integration of LiNbO3 and silicon to prepare piezoelectric pressure sensors, which could significantly improve the sensitivity of the sensor by approximately 16.06 times (2.569 mV kPa-1) that of the original sample (0.160 mV kPa-1) due to an appropriate residual stress that did not shatter LiNbO3 or silicon, thus providing a possible method for integrating piezoelectric pressure sensors and integrated circuits
Preparation and testing of flexible thermoelectric power generator
Flexible thermoelectric power generator was fabricated by vacuum evaporation method. The effect of evaporation current and substrate temperature on the performance of thermoelectric films was investigated. When the evaporation currents were 100 A for p-type film and 110A for n-type film, the films exhibit (0 0 1) oriented which enhanced thermoelectric properties. The optimized power factor of the p-type films was found to be about 0.97 × 10−4 W/m·K2 at the substrate temperature of 50 °C. The optimized power factor of the n-type films was found to be about 3.8 × 10−4 W/m·K2 at the substrate temperature of 100 °C. The output voltage of flexible device with 11 pairs of p-n legs was measured. And the output voltage was 50 μV/K calculated from the slope, when the temperature difference was 100 K, the output voltage was about 50 mV. Keywords: Flexible, Thermoelectric power generator, Evaporation current, Substrate temperature, Polyimide, Vacuum evaporatio
High-Performance MIM Capacitors for a Secondary Power Supply Application
Microstructure is important to the development of energy devices with high performance. In this work, a three-dimensional Si-based metal-insulator-metal (MIM) capacitor has been reported, which is fabricated by microelectromechanical systems (MEMS) technology. Area enlargement is achieved by forming deep trenches in a silicon substrate using the deep reactive ion etching method. The results indicate that an area of 2.45 × 103 mm2 can be realized in the deep trench structure with a high aspect ratio of 30:1. Subsequently, a dielectric Al2O3 layer and electrode W/TiN layers are deposited by atomic layer deposition. The obtained capacitor has superior performance, such as a high breakdown voltage (34.1 V), a moderate energy density (≥1.23 mJ/cm2) per unit planar area, a high breakdown electric field (6.1 ± 0.1 MV/cm), a low leakage current (10−7 A/cm2 at 22.5 V), and a low quadratic voltage coefficient of capacitance (VCC) (≤63.1 ppm/V2). In addition, the device’s performance has been theoretically examined. The results show that the high energy supply and small leakage current can be attributed to the Poole–Frenkel emission in the high-field region and the trap-assisted tunneling in the low-field region. The reported capacitor has potential application as a secondary power supply
Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition
Aluminum oxide (Al2O3) amorphous structure with short-range order and long-range disorder has presented promising applications in optical and optoelectronic devices. In this paper, the Al2O3 films with different thickness were prepared by atomic layer deposition (ALD) technology at 200°C in order to achieve amorphous structure. X-ray diffraction (XRD) and energy dispersive spectrum (EDS) results indicated that the Al2O3 films were amorphous structure and stable O/Al ratio. The surface topography investigated by atomic force microscopy (AFM) showed that the samples were smooth and crack-free. Spectroscopic ellipsometer (SE) measurements were operated to investigate the effect of thickness on the structure and optical properties of films with Tauc-Lorentz model. It is found that the band gap exhibits a steady value ~2.3 eV by the UV-VIS transmittance method, but the T-L model was ~3.0 eV. The refractive index and extinction coefficient are related to the variation of thickness and the samples surface quality of amorphous network structure in the thin films. The outstanding optoelectronic properties and facile fabrication of Al2O3 films amorphous structure can be extended to other similar oxides, which could display wide applications in various engineering and industrial fields
Intramode Brillouin Scattering Properties of Single-Crystal Lithium Niobate Optical Fiber
Ordinary step-type fiber usually has only one obvious Brillouin scattering gain peak with a low gain coefficient, resulting in a poor sensing performance. As a promising material for nonlinear photonics, lithium niobate can significantly improve the Brillouin gain due to its higher refractive index when replaced with the core material. Furthermore, the higher-order acoustic modes make the Brillouin gain spectrum exhibit multiple scattering peaks, which could improve the performance of sensors. In this study, we simulated the Brillouin scattering properties of different modes of intramode in step-index lithium niobate core fibers. We analyzed the intramode-stimulated Brillouin scattering properties of different pump–Stokes pairs for nine LP modes (LP01, LP11, LP21, LP02, LP31, LP12, LP41, LP22, and LP03) guided in fiber. The results show that both the effective refractive index and Brillouin scattering frequency shift are decreased with the increase in the nine mode orders, and the values of which are 2.2413 to 2.1963, and 21.17 to 20.73 GHz, respectively. The typical back-stimulated Brillouin scattering gain is obtained at 1.7525 m−1·W−1. These simulation results prove that the Brillouin gain of the LiNbO3 optical fiber structure can be significantly improved, which will pave the way for better distributed Brillouin sensing and for improving the transmission capacity of communication systems
A New Joint Denoising Algorithm for High-G Calibration of MEMS Accelerometer Based on VMD-PE-Wavelet Threshold
Recently, the High-G MEMS accelerometer (HGMA) has been used in navigation, mechanical property detection, consumer electronics, and other fields widely. As the core component of a measuring system, it is very crucial to enhance the calibration accuracy of the accelerometer. In order to remove the noises in the accelerometer output signals to enhance its calibration accuracy, a combined denoising method which combines variational mode decomposition (VMD) with permutation entropy (PE) and wavelet threshold is given in this article. For the sake of overcoming the defect of signal distortion caused by the traditional denoising methods, this joint denoising method combines the good decomposition characteristics of VMD and the good denoising ability of wavelet threshold and introduces PE as a judgment criterion to achieve a good balance between denoising effect and signal fidelity. The combination of PE and VMD not only avoids the phenomenon of mode aliasing but also improves the ability to identify the noise components, which makes the wavelet threshold denoising more specific. Firstly, some intrinsic mode functions (IMFs) are obtained by using VMD to decompose the complex signal containing noise which is outputted from the accelerometer. Secondly, the IMF components can be divided into noise IMF components, mixed IMF components, and useful IMF components by PE algorithm. Thirdly, the noise IMF components can be discarded directly, and then the mixed IMF components can be denoised by wavelet threshold to obtain the noiseless IMF components; in addition, the useful IMF components need to be retained. Finally, the final denoising signal can be obtained by reconstructing the IMF components which have been denoised by the wavelet threshold and the useful IMF components retained before denoising. The experimental results prove that the combined denoising algorithm combines the merits of VMD, PE, and wavelet threshold, and this new algorithm has a good performance in the calibration denoising of accelerometer. Compared with the serious signal distortion caused by using only EMD or wavelet threshold, this method not only has a good denoising effect (the noises in the static part are eliminated by 99.97% and the SNR of the dynamic part is raised to 18.56) but also can maintain a good signal fidelity (the error of shock peak amplitude is 3.4%, the error of vibration peak amplitude is 0.4%, and the correlation coefficient between the denoising signals and dynamic part is as high as 0.982)
An Intelligent Glove of Synergistically Enhanced ZnO/PAN-Based Piezoelectric Sensors for Diversified Human–Machine Interaction Applications
Human–machine interaction is now deeply integrated into our daily lives. However, the rigidity and high-power supply of traditional devices limit their further development. Herein, a high-performance flexible piezoelectric sensor (HFPS) based on a novel zinc oxide/polyacrylonitrile/Ecoflex (ZnO/PAN/Ecoflex) composite membrane is proposed. Due to the synergistic piezoelectricity of ZnO and PAN, the output voltage/current of the HFPS is increased by 140%/100% compared to the pure Zno/Ecoflex composite membrane. Furthermore, the fabricated HFPSs also have excellent sensitivity, linearity, stability and flexibility under periodic pressure. On this basis, due to its flexibility, stretchability and battery-free characteristics, a self-powered HFPS-based intelligent glove is proposed to wirelessly control diverse electronic systems through human hand gestures. In the meanwhile, the intelligent glove has been successfully applied to car two-dimensional motion, light bulb control and fan control. With the advantages of simple operation, portability and low power consumption, the glove is expected to provide new application prospects for human–machine interaction systems