63 research outputs found

    Rapid Cycling Synchrotron Option for Project X

    Full text link
    This paper presents an 8 GeV Rapid Cycling Synchrotron (RCS) option for Project X. It has several advantages over an 8 GeV SC linac. In particular, the cost could be lower. With a 2 GeV 10 mA pulsed linac as injector, the RCS would be able to deliver 4 MW beam power for a muon collider. If, instead, a 2 GeV 1 mA CW linac is used, the RCS would still be able to meet the Project X requirements but it would be difficult for it to serve a muon collider due to the very long injection time.Comment: 4 pages, 2 figures, presentation at the Workshop on Applications of High Intensity Proton Accelerators AHIPA0

    Spallation Neutron Source and Other High Intensity Proton Sources

    Full text link
    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.Comment: A lecture given at the 3rd OCPA International Accelerator School, July 25 - August 3, 2002 at Singapore. 26 page

    Synchrotron Based Proton Drivers

    Get PDF
    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues

    Proton driver study at Fermilab

    Get PDF
    Fermilab has started the design work of a high intensity proton source called the proton driver. It would provide a 4 MW proton beam to the target for muon production. This paper discusses the basic features of this machine and the associated accelerator physics and design issues
    • …
    corecore