1,620 research outputs found

    Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging

    Get PDF
    © 2014 Chang et al. Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.published_or_final_versio

    Multidetector CT Findings of a Congenital Coronary Sinus Anomaly: a Report of Two Cases

    Get PDF
    Congenital coronary sinus anomalies are extremely rare, and they have received relatively little attention. This is probably due to the lack of both clinical symptoms and significant cardiac functional disturbance. We present two cases of a coronary sinus anomaly and briefly review the literature. Recognizing and being familiar with the variations of a congenital coronary sinus anomaly in congenital heart disease may avoid a misinterpretation of cardiac catheterization findings and the troublesome disruption of coronary sinus blood return during the surgical management of cardiac lesions

    An integrated analysis tool for analyzing hybridization intensities and genotypes using new-generation population-optimized human arrays

    Get PDF
    The cross-sample plot of the multipoint LOH/LCSH analyses of the three samples used in Fig. 5. The plot comprises four panels: (a) The top-left panel is a cross-sample and cross-chromosome plot. The vertical axis is the index of study samples, and the horizontal axis is the physical position (Mb) on each of the 23 chromosomes. The blue and red bars represent SNPs without and with LOH/LSCH, respectively. (b) The top-right panel is a histogram of cross-chromosome aberration frequency. The vertical axis is the index of study samples, and the horizontal axis is the cross-chromosome aberration frequency of the corresponding samples. The pink (skyblue) background represents that the genetic gender of a sample is female (male). The histogram represents the aberration frequency of LOH/LCSH SNPs across the chromosomes of the corresponding samples. (c) The bottom-left panel is a histogram of the cross-sample aberration frequency. The vertical axis is the cross-sample aberration frequency of a SNP, and the horizontal axis is the physical position (Mb) on each of the 23 chromosomes. The purple line represents the aberration proportion of samples carrying the SNPs with LOH/LCSH. (d) The bottom-right panel is the legend of the genetic gender that is used in panel (b), where the pink (skyblue) background represents that the genetic gender of a sample is female (male). (TIFF 1656 kb

    A new analysis tool for individual-level allele frequency for genomic studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allele frequency is one of the most important population indices and has been broadly applied to genetic/genomic studies. Estimation of allele frequency using genotypes is convenient but may lose data information and be sensitive to genotyping errors.</p> <p>Results</p> <p>This study utilizes a unified intensity-measuring approach to estimating individual-level allele frequencies for 1,104 and 1,270 samples genotyped with the single-nucleotide-polymorphism arrays of the Affymetrix Human Mapping 100K and 500K Sets, respectively. Allele frequencies of all samples are estimated and adjusted by coefficients of preferential amplification/hybridization (CPA), and large ethnicity-specific and cross-ethnicity databases of CPA and allele frequency are established. The results show that using the CPA significantly improves the accuracy of allele frequency estimates; moreover, this paramount factor is insensitive to the time of data acquisition, effect of laboratory site, type of gene chip, and phenotypic status. Based on accurate allele frequency estimates, analytic methods based on individual-level allele frequencies are developed and successfully applied to discover genomic patterns of allele frequencies, detect chromosomal abnormalities, classify sample groups, identify outlier samples, and estimate the purity of tumor samples. The methods are packaged into a new analysis tool, ALOHA (<b>A</b>llele-frequency/<b>L</b>oss-<b>o</b>f-<b>h</b>eterozygosity/<b>A</b>llele-imbalance).</p> <p>Conclusions</p> <p>This is the first time that these important genetic/genomic applications have been simultaneously conducted by the analyses of individual-level allele frequencies estimated by a unified intensity-measuring approach. We expect that additional practical applications for allele frequency analysis will be found. The developed databases and tools provide useful resources for human genome analysis via high-throughput single-nucleotide-polymorphism arrays. The ALOHA software was written in R and R GUI and can be downloaded at <url>http://www.stat.sinica.edu.tw/hsinchou/genetics/aloha/ALOHA.htm</url>.</p

    A Fuzzy MCDM Approach for Green Supplier Selection from the Economic and Environmental Aspects

    Get PDF
    Due to the challenge of rising public awareness of environmental issues and governmental regulations, green supply chain management (SCM) has become an important issue for companies to gain environmental sustainability. Supplier selection is one of the key operational tasks necessary to construct a green SCM. To select the most suitable suppliers, many economic and environmental criteria must be considered in the decision process. Although numerous studies have used economic criteria such as cost, quality, and lead time in the supplier selection process, only some studies have taken into account the environmental issues. This study proposes a comprehensive fuzzy multicriteria decision making (MCDM) approach for green supplier selection and evaluation, using both economic and environmental criteria. In the proposed approach, a fuzzy analytic hierarchy process (AHP) is employed to determine the important weights of criteria under vague environment. In addition, a fuzzy technique for order performance by similarity to ideal solution (TOPSIS) is used to evaluate and rank the potential suppliers. Finally, a case study in Luminance Enhancement Film (LEF) industry is presented to illustrate the applicability and efficiency of the proposed method

    Epitaxial Growth of Two-dimensional Insulator Monolayer Honeycomb BeO

    Full text link
    The emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to thermodynamically stable monolayers. We report the synthesis of a 2D insulator comprised of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure. The h-BeO is grown by molecular beam epitaxy (MBE) on Ag(111) thin films that are conveniently grown on Si(111) wafers. Using scanning tunneling microscopy and spectroscopy (STM/S), the honeycomb BeO lattice constant is determined to be 2.65 angstrom with an insulating band gap of 6 eV. Our low energy electron diffraction (LEED) measurements indicate that the h-BeO forms a continuous layer with good crystallinity at the millimeter scale. Moir\'e pattern analysis shows the BeO honeycomb structure maintains long range phase coherence in atomic registry even across Ag steps. We find that the interaction between the h-BeO layer and the Ag(111) substrate is weak by using STS and complimentary density functional theory calculations. We not only demonstrate the feasibility of growing h-BeO monolayers by MBE, but also illustrate that the large-scale growth, weak substrate interactions, and long-range crystallinity make h-BeO an attractive candidate for future technological applications. More significantly, the ability to create a stable single crystalline atomic sheet without a bulk layered counterpart is an intriguing approach to tailoring novel 2D electronic materials.Comment: 25 pages, 7 figures, submitted to ACS Nano, equal contribution by Hui Zhang and Madisen Holbroo

    Determination of band alignment in the single layer MoS2/WSe2 heterojunction

    Full text link
    The emergence of transition metal dichalcogenides (TMDs) as 2D electronic materials has stimulated proposals of novel electronic and photonic devices based on TMD heterostructures. Here we report the determination of band offsets in TMD heterostructures by using microbeam X-ray photoelectron spectroscopy ({\mu}-XPS) and scanning tunneling microscopy/spectroscopy (STM/S). We determine a type-II alignment between MoS2\textrm{MoS}_2 and WSe2\textrm{WSe}_2 with a valence band offset (VBO) value of 0.83 eV and a conduction band offset (CBO) of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of WSe2\textrm{WSe}_2 and MoS2\textrm{MoS}_2 are well retained in their respective layers due to a weak interlayer coupling. Moreover, a VBO of 0.94 eV is obtained from density functional theory (DFT), consistent with the experimental determination.Comment: ^ These authors contributed equally. *Corresponding author E-mail: [email protected], [email protected] 20 pages, 4 figures in main tex
    corecore