26 research outputs found

    Effects of tongue cleaning on bacterial flora in tongue coating and dental plaque: a crossover study

    Get PDF
    BACKGROUND: The effects of tongue cleaning on reconstruction of bacterial flora in dental plaque and tongue coating itself are obscure. We assessed changes in the amounts of total bacteria as well as Fusobacterium nucleatum in tongue coating and dental plaque specimens obtained with and without tongue cleaning. METHODS: We conducted a randomized examiner-blind crossover study using 30 volunteers (average 23.7 ± 3.2 years old) without periodontitis. After dividing randomly into 2 groups, 1 group was instructed to clean the tongue, while the other did not. On days 1 (baseline), 3, and 10, tongue coating and dental plaque samples were collected after recording tongue coating score (Winkel tongue coating index: WTCI). After a washout period of 3 weeks, the same examinations were performed with the subjects allocated to the alternate group. Genomic DNA was purified from the samples and applied to SYBR® Green-based real-time PCR to quantify the amounts of total bacteria and F. nucleatum. RESULTS: After 3 days, the WTCI score recovered to baseline, though the amount of total bacteria in tongue coating was significantly lower as compared to the baseline. In plaque samples, the bacterial amounts on day 3 and 10 were significantly lower than the baseline with and without tongue cleaning. Principal component analysis showed that variations of bacterial amounts in the tongue coating and dental plaque samples were independent from each other. Furthermore, we found a strong association between amounts of total bacteria and F. nucleatum in specimens both. CONCLUSIONS: Tongue cleaning reduced the amount of bacteria in tongue coating. However, the cleaning had no obvious contribution to inhibit dental plaque formation. Furthermore, recovery of the total bacterial amount induced an increase in F. nucleatum in both tongue coating and dental plaque. Thus, it is recommended that tongue cleaning and tooth brushing should both be performed for promoting oral health

    A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity

    Get PDF
    The Toll receptor was originally identified as an indispensable molecule for Drosophila embryonic development and subsequently as an essential component of innate immunity from insects to humans. Although in Drosophila the Easter protease processes the pro-Spätzle protein to generate the Toll ligand during development, the identification of the protease responsible for pro-Spätzle processing during the immune response has remained elusive for a decade. Here, we report a protease, called Spätzle-processing enzyme (SPE), required for Toll-dependent antimicrobial response. Flies with reduced SPE expression show no noticeable pro-Spätzle processing and become highly susceptible to microbial infection. Furthermore, activated SPE can rescue ventral and lateral development in embryos lacking Easter, showing the functional homology between SPE and Easter. These results imply that a single ligand/receptor-mediated signaling event can be utilized for different biological processes, such as immunity and development, by recruiting similar ligand-processing proteases with distinct activation modes

    Two novel mechanisms for maintenance of stemness in mesenchymal stem cells: SCRG1/BST1 axis and cell–cell adhesion through N-cadherin

    No full text
    Summary: Mesenchymal stem cells (MSCs) retain the ability to self-renew and differentiate into mesenchymal cells. Therefore, human MSCs are suitable candidates for use in regenerative medicine and cell therapies. Upon activation by tissue damage, MSCs contribute to tissue repair through a multitude of processes such as self-renewal, migration, and differentiation. However, loss of self-renewal and multi-lineage differentiation potential occurs at a high rate during cell doubling. Effective MSC therapies require the establishment of new techniques that preserve MSC multipotency after lengthy cell expansions. Here, two novel mechanisms are described for maintenance of stemness in MSCs via scrapie responsive gene 1 (SCRG1)/bone marrow stromal cell antigen-1 (BST1) ligand–receptor combination and cell–cell adhesion through N-cadherin. These two mechanisms findings provide a valuable tool for regenerative medicine and cell therapeutic methods that require the ex vivo expansion of human MSCs while maintaining native stem cell potential. Keywords: Mesenchymal stem cells, Stemness, CD271/LNGFR, CD106/VCAM1, SCRG1/BST1 axis, N-cadheri

    Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts

    No full text
    Mesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs. The expression of monocyte chemotactic protein- (MCP-)1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue

    EGF Positively Regulates the Proliferation and Migration, and Negatively Regulates the Myofibroblast Differentiation of Periodontal Ligament-Derived Endothelial Progenitor Cells through MEK/ERK- and JNK-Dependent Signals

    No full text
    Background/Aims: Remodeling of fibrous and vascular tissues in the periodontal ligament (PDL) around the tooth root was observed during tooth movement by orthodontic force application. We previously demonstrated that a single cell-derived culture (SCDC) of primarily cultured PDL fibroblasts, called SCDC2, has an endothelial progenitor cell (EPC)-like character and can form endothelial cell (EC) marker-positive blood vessel-like structures. However, the types of molecular mechanisms that control the in vivo kinetic properties and the differentiation of the PDL-derived EPC-like cells into myofibroblasts (MFs), which are known to expand fibrous tissues, require clarification. Methods: Using specific mitogen activated protein kinase (MAPK) inhibitors, we examined how epidermal growth factor (EGF)-mediated MAPK signals affected the proliferation, migration, and MF differentiation of these cells. Results: EGF induced SCDC2 cell proliferation in MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)- and c-Jun N-terminal kinase (JNK)-dependent manners. In addition, EGF suppressed the expression of MF differentiation markers in these cells in a MEK/ERK-dependent manner, and, moreover, stimulated the cell migration in a MEK/ERK-dependent manner. Conclusion: EGF regulates fibrous tissue remodeling in PDLs through MEK/ERK- and JNK-mediated signals by affecting the proliferation, migration, and MF differentiation of the PDL-derived EPC-like cells
    corecore