
Developmental Cell 10, 45–55, January, 2006 ª2006 Elsevier Inc. DOI 10.1016/j.devcel.2005.11.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
A Spätzle-Processing Enzyme Required for Toll
Signaling Activation in Drosophila Innate Immunity
In-Hwan Jang,1,2,7 Naoyuki Chosa,3,7,8 Sung-Hee Kim,1

Hyuck-Jin Nam,1 Bruno Lemaitre,4 Masanori Ochiai,3

Zakaria Kambris,4 Sylvain Brun,4 Carl Hashimoto,5

Masaaki Ashida,3 Paul T. Brey,2,* and Won-Jae Lee1,6,*
1Division of Molecular Life Science
Ewha Womans University
Seoul, 120-750
South Korea
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Summary

The Toll receptor was originally identified as an indis-

pensable molecule for Drosophila embryonic develop-
ment and subsequently as an essential component of

innate immunity from insects to humans. Although
in Drosophila the Easter protease processes the pro-

Spätzle protein to generate the Toll ligand during de-
velopment, the identification of the protease respon-

sible for pro-Spätzle processing during the immune
response has remained elusive for a decade. Here,

we report a protease, called Spätzle-processing en-
zyme (SPE), required for Toll-dependent antimicrobial

response. Flies with reduced SPE expression show no
noticeable pro-Spätzle processing and become highly

susceptible to microbial infection. Furthermore, acti-
vated SPE can rescue ventral and lateral development

in embryos lacking Easter, showing the functional ho-
mology between SPE and Easter. These results imply

that a single ligand/receptor-mediated signaling event

can be utilized for different biological processes, such
as immunity and development, by recruiting similar

ligand-processing proteases with distinct activation
modes.
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Introduction

Innate immunity is an evolutionary conserved host de-
fense system throughout the animal and plant kingdoms.
In response to microbial infection, the host initiates vari-
ous inflammatory signaling pathways, such as NF-kB, to
induce immune effector molecules. In Drosophila, there
are two genetically identified NF-kB pathways, Toll and
immune deficiency (IMD) (Boutros et al., 2002; Brennan
and Anderson, 2004; Hoffmann and Reichhart, 2002;
Hultmark, 2003; Lemaitre, 2004; Silverman and Maniatis,
2001). Toll was originally identified as a type I transmem-
brane receptor that controls the dorsal-ventral pattern-
ing of the Drosophila embryo (Anderson et al., 1985a,
1985b; Hashimoto et al., 1988) and subsequently was
shown to be involved in host resistance against fungal
and Gram-positive (G+) bacterial infections (Lemaitre
et al., 1996; Ligoxygakis et al., 2002a; Michel et al.,
2001). A family of Toll-like receptors (TLRs) has also
been found in humans, where they act as pattern recog-
nition receptors (PRRs) for the activation of immune re-
sponses by recognizing pathogen-associated molecular
patterns (PAMPs) such as lipopolysaccharide (LPS),
peptidoglycan (PG), and b-1-3-glucan (bG) (Beutler and
Rietschel, 2003; Iwasaki and Medzhitov, 2004). However,
in contrast to TLRs, Drosophila Toll does not function as
a bona fide PRR (Levashina et al., 1999; Ligoxygakis
et al., 2002a). Instead, an enzymatically cleaved form of
the pro-Spätzle gene product functions as the direct ex-
tracellular ligand for Toll (Weber et al., 2003). During early
embryonic patterning, Easter, a CLIP domain serine pro-
tease, is known to activate Toll by cleaving pro-Spätzle
(Chasan and Anderson, 1989). However, as the null mu-
tant of Easter exhibits normal Toll activation after im-
mune challenge, the involvement of other protease(s)
with Easter-like activity has been suggested during Toll-
dependent immune response (Lemaitre et al., 1996). Ex-
posure and interaction of PAMPs to soluble Drosophila
PRRs such as PG recognition proteins (PGRPs) and
gram-negative bacteria binding proteins (GNBPs) during
infection is believed to initiate the sequential activation
of extracellular serine protease zymogens, leading to
the cleavage of pro-Spätzle, analogous to the cascade
involving Easter during embryonic patterning (Gobert
et al., 2003; Levashina et al., 1999; Ligoxygakis et al.,
2002a; Michel et al., 2001). The persphone (psh) gene en-
codes the only known serine protease required to acti-
vate Toll in response to fungal infection, but not G+ bac-
terial infection (Ligoxygakis et al., 2002a). Thus, in the
case of G+ bacteria, another protease cascade may be
involved in Toll activation (Gobert et al., 2003; Kim
et al., 2000b; Michel et al., 2001). As both cascades would
presumably lead to the conversion of pro-Spätzle to its
active form through limited proteolysis, they must share
a ‘‘downstream’’ protease that cleaves pro-Spätzle in re-
sponse to both G+ bacteria and fungi. However, this key
pro-Spätzle-processing protease has remained elusive
for a decade.

In this study, we have taken a biochemical and ge-
netic approach using two model insects, the silkworm
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Bombyx mori and Drosophila melanogaster, to identify
a Spätzle-processing enzyme (SPE) involved in immu-
nity. SPE is specifically activated by either fungi or G+
bacteria and is essential for Toll activation and host
defense.

Results

Purification and Characterization of a Bombyx
Serine Protease Specifically Activated after Either

PG or bG Treatment
Drosophila is a powerful tool for genetic studies, but
Bombyx mori is a better model for biochemical studies,
in particular of serine proteases involved in host de-
fense, due to its large size and greater volume of extract-
able hemolymph (Ashida, 1971, 1990). The plasma frac-
tion of Bombyx hemolymph contains a serine protease
named BAEEase (based on its ability to hydrolyze the
synthetic substrate Na-benzoyl-L-arginine ethyl ester,
BAEE) that can be activated from a zymogen form by
two independent PAMPs (PG and bG) (Katsumi et al.,
1995), a property shared with the hypothetical Spätzle-
processing enzyme involved in Drosophila immunity.
To investigate the role of BAEEase, we purified it from
silkworm hemolymph (Figures 1A–1C). BAEEase was
purified in a zymogen form that was specifically acti-
vated through limited proteolysis after either PG or bG
treatment in the presence of a biochemical preparation
containing all necessary upstream components for pro-
phenoloxidase (pro-PO) activation (Figure 1D). This
BAEEase is distinct from the Bombyx protease involved
in activating pro-PO during melanization of invading
pathogens (Ashida and Brey, 1995; Ashida et al., 1983;
Kanzaki et al., 2003; Ochiai and Ashida, 1988, 1999,
2000; Yoshida et al., 1996), which is also activated by
both PG and bG, suggesting a different role for BAEEase
in host defense. Cloning and DNA sequence made pos-
sible by the purified protein revealed that BAEEase is ini-
tially synthesized as an inactive zymogen containing
a NH2-terminal CLIP domain and a COOH-terminal
serine protease catalytic domain (Figure S1; see the
Supplemental Data available with this article online).
Biochemical analysis showed that, after the signal pep-
tide removal (cleavage between G24 and Q25), the
BAEEase zymogen was subjected to two additional lim-
ited proteolyses (between R83 and S84, and between
R112 and I113) during PG- and bG-induced activation
(Figure 1D and Figure S1). The cleavage between R112
and I113 (DRYIFGG) was found to be essential for ac-
quiring BAEEase enzymatic activity (data not shown).
These results showed that Bombyx BAEEase exists as
a zymogen and can be activated by upstream serine
protease cascade components in the presence of PG
and bG.

Identification of SPE, a Drosophila Homolog
of Bombyx BAEEase that Activates Spätzle

and Toll Signaling
The fact that Bombyx BAEEase can be activated by both
PG and bG suggests that this enzyme is a good candi-
date to be the hypothetical Spätzle-processing enzyme
that is activated by both PAMPs. To test this idea by
using genetic analysis, we searched for the Drosophila
homolog of Bombyx BAEEase. Among the 24 CLIP
domain serine proteases having trypsin-like specificity,
including Easter (Ross et al., 2003), only one (Flybase
annotation: CG16705) has the identical cleavage site
(DRYIFGG) for zymogen activation between the CLIP do-
main and the catalytic domain as BAEEase (Figure 2A).
This Drosophila homolog of Bombyx BAEEase was sub-
sequently named SPE for Spätzle-Processing Enzyme
based on its ability to process Spätzle in vitro and
in vivo, as shown below.

Easter, an essential serine protease for Toll activation
during early embryogenesis, has been shown to cleave
Spätzle between R143 and V144 to yield a COOH-
terminal fragment of 106 amino acids that corresponds
to the Toll ligand (DeLotto and DeLotto, 1998; Weber
et al., 2003). To test whether SPE can cleave Spätzle,
we first generated an activated form of SPE consisting
of just the catalytic domain after signal sequence cleav-
age (see Experimental Procedures). When this activated
SPE was expressed with Spätzle in Drosophila S2 cells, a
processed form of Spätzle was produced that matched
the size of the C-terminal fragment produced by Easter
cleavage (Figure 2B). Consistent with cleavage at the
same site used by Easter, a mutant form of Spätzle hav-
ing L143 and N144 instead of R143 and V144 was not
cleaved when expressed with activated SPE (Figure 2B).
Two additional experiments demonstrated that SPE di-
rectly cleaves Spätzle, rather than another protease act-
ing between SPE and Spätzle. First, wild-type Spätzle,
but not the cleavage mutant, was cleaved when co-
expressed with activated SPE in human embryonic kid-
ney cells (Figure S2A). Second, using purified recombi-
nant proteins made in S2 cells, we found that wild-type
Spätzle, but not the cleavage mutant, was cleaved when
incubated with activated SPE (Figure S2B). In flies, ex-
pression of activated SPE caused the production of a
processed form of endogenous Spätzle corresponding
in size to the C-terminal form of Spätzle generated by
cleavage between R143 and V144 (Figure 2C). These re-
sults suggest that SPE processes Spätzle identically to
Easter in vitro and in vivo.

To test whether SPE can activate Toll signaling, we ex-
pressed activated SPE in S2 cells and in flies, and we
then assayed the expression of the gene for Drosomycin
(Drs), an antifungal peptide known to be induced by Toll
signaling in response to microbial infection (Lemaitre
et al., 1996). In both cases, Drs expression was signifi-
cantly induced in the absence of infection, suggesting
that activated SPE can trigger Toll signaling by process-
ing endogenous pro-Spätzle in S2 cells and flies (Figures
2D and 2E). These results demonstrate that SPE can
process pro-Spätzle to generate the ligand that acti-
vates Toll signaling.

Activated SPE Rescues Ventral and Lateral
Development in Embryos Lacking Easter

To test further the ability of SPE to activate Spätzle
in vivo, we assayed SPE activity by RNA injection into
embryos lacking maternally encoded Easter. In the early
embryo, Easter processes pro-Spätzle to activate Toll
signaling, which is necessary for the development of
ventral and lateral cell types and the establishment of
dorsoventral polarity (Chasan and Anderson, 1989;
DeLotto and DeLotto, 1998). Consequently, in the em-
bryo lacking Easter, Toll signaling fails to be activated,
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Figure 1. Purification and Characterization of Bombyx Pro-BAEEase and BAEEase

(A) Bombyx pro-BAEEase and BAEEase were purified by using four sequential chromatography steps involving (Aa) Superdex 75, (Ab and Ac)

Q-Sepharose, and (Ad) heparin-Q-Sepharose, and their activities were assayed as described in Supplemental Experimental Procedures. In (Aa)–

(Ac), the horizontal bar represents fractions that were pooled for the next purification step, which, in (Ac), also involved a treatment to convert

pro-BAEEase into BAEEase, whereas in (Ad) it represents the pooled fractions providing the purified BAEEase preparation. Open circle, pro-

BAEEase; closed circle, BAEEase; solid line, absorbance at 280 nm; broken line, NaCl concentration.

(B) SDS-PAGE and immunoblotting of pro-BAEEase and BAEEase. A crude pro-BAEEase fraction (lanes 1–3, 60 mg protein/lane), purified pro-

BAEEase (lanes 4–6, 0.2 mg protein/lane), and purified BAEEase (lanes 7–10, 0.1 mg protein/lane) were subjected to SDS-PAGE under reducing

conditions, except in the case of lanes 8 and 10, which were run under nonreducing conditions. Lanes 1, 4, 7, and 8 were stained with Coomassie

brilliant blue R-250, whereas the remaining numbered lanes were subjected to Western blot analysis with antibody against the catalytic domain

(lanes 2, 5, 9, and 10) or the CLIP domain (lanes 3 and 6) of BAEEase. The molecular sizes of marker proteins (M) are indicated at the left.

(C) Reversed-phase octyl column chromatography and MALDI-TOF mass spectroscopy of purified pro-BAEEase. Purified pro-BAEEase (10 mg,

see lanes 4–6 of [B]) was applied to the column, and peak fractions a and b were subjected to MALDI-TOF mass spectroscopy. The numbers at

the top of each peak in the spectra (inset) are the means of ten observed mass/H+ values.

(D) Purified pro-BAEEase was activated with PG as described in Supplemental Experimental Procedures. BAEEase activity over time is shown at

the left. Closed circles, complete reaction mixture; open circles, control reaction in which PG or purified pro-BAEEase was omitted. An almost

identical activation profile was obtained when pro-BAEEase was activated by bG (data not shown). Processing of pro-BAEEase to BAEEase over

time is shown at the right, as detected by Western blotting with antibody against the catalytic domain of BAEEase under reducing (upper panel)

and nonreducing (lower panel) conditions. The numbers at the left refer to the sizes of marker proteins (M).
and, thus, cells at all dorsoventral positions assume the
fate of dorsal cell types in the wild-type embryo (Figures
3A–3C). We found that injection of synthetic RNA encod-
ing activated SPE very efficiently rescued ventral and
lateral development in embryos lacking Easter (Figures
3D–3F). RNA encoding full-length SPE had no rescuing
activity. Rescue by activated SPE-RNA showed a dose
dependence, with higher levels of SPE required to in-
duce the most ventral cell fate than to induce lateral
cell types, as was previously observed in similar injec-
tion experiments with activated Easter (Chasan et al.,
1992; Misra et al., 1998). In addition, ventral or lateral
cell types were induced at all dorsoventral positions,
indicating that activated SPE, like activated Easter, is
diffusible and therefore can be active everywhere in
the embryo; however, normally, Easter activity is ven-
trally restricted. These results provide further evi-
dence that SPE processes pro-Spätzle identically to
Easter, thereby generating the ligand that activates
Toll signaling.
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Figure 2. Identification and Characterization of the Spätzle-Processing Enzyme

(A) Drosophila Spätzle-processing enzyme (SPE) and Bombyx BAEEase have identical cleavage sites for zymogen activation. BAEEase, SPE,

and other Drosophila CLIP proteases are compared in the cleavage region between CLIP and the catalytic domains (boxed). The cleavage

site in pro-BAEEase is indicated by an arrow.

(B) SPE can process Spätzle in vitro. Spätzle (pro-SPZ-wt) was expressed in Drosophila S2 cells and was detected by Western blot analysis with

an antibody against the C-terminal V5 epitope. Coexpression of either activated SPE (aSPE) or activated Easter (aEaster) resulted in processed

Spätzle corresponding in size to the C-terminal fragment of 106 amino acids (aSPZ is indicated by an arrow), the active Toll ligand. Mutant Spät-

zle (pro-SPZ-mut) having an altered cleavage site was not cleaved.

(C) Activated SPE induces processing of Spätzle in flies. Transgenic expression of activated SPE (UAS-aSPE/c564-GAL4) results in the produc-

tion of processed Spätzle that matches the size of the C-terminal fragment of Spätzle (arrow) expressed from a transgene (UAS-aSPZ/c564-

GAL4). Western blot analysis was performed with an anti-Spätzle antibody.

(D) Expression of activated SPE (aSPE) or activated Easter (aEaster) induces Drosomycin mRNA expression in S2 cells in the presence of ectopic

pro-Spätzle expression as measured by real-time PCR analysis. The amount of Drosomycin expression in the mock-transfected cells was taken

arbitrarily to be 1, and the results are presented as relative expression levels. T bars represent the mean and standard deviations of at least three

independent experiments.

(E) Transgenic expression of activated SPE (UAS-aSPE/c564-GAL4) induces expression of Drosomycin mRNA (left panel) and the Drosomycin

reporter Drs-GFP in larvae (right panel). The amount of Drosomycin expression in the c564-GAL4/+ flies was taken arbitrarily to be 1, and the

results are presented as relative expression levels. T bars represent the mean and standard deviations of at least three independent experiments.
SPE Is Essential for Host Resistance to Fungi

and Gram-Positive Bacteria
As our data indicated that SPE can process pro-Spätzle
to generate the Toll ligand in vitro and in vivo, we inves-
tigated whether SPE plays a role in activating Toll signal-
ing during the immune response. Because a SPE mutant
was not available, we decided to assess the loss-of-
function phenotype for SPE by using RNAi and therefore
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generated transgenic flies carrying a construct targeting
SPE for RNAi-mediated gene knockdown under UAS
control. Flies in which this construct was activated ubiq-
uitously were completely viable, despite having SPE-
RNA at only w10% of the wild-type level (Figure S3).
However, they were susceptible to fungal and G+ bacte-

Figure 3. Injection of Activated SPE-RNA Rescues Ventral and Lat-

eral Development in Embryos Lacking Easter

(A–C) All embryos are oriented with the anterior end toward the left

and the dorsal side facing up. Embryos lacking the maternal Easter

protease develop a dorsalized phenotype resulting from cells at all

dorsoventral positions assuming the fate of dorsal cell types in the

wild-type embryo. The dorsalized embryo exhibits at gastrulation

(A) multiple transverse folds representing extensions of normally

dorsal restricted folds, (B) differentiates a cuticle containing only

dorsally derived structures (the bright oval structure encircling the

cuticle is the vitelline envelope), and (C) fails to be specifically

stained with antibodies to the Twist protein, a marker for the most

ventral cell fate.

(D and E) Lateral cell types were induced around the dorsoventral

circumference of an embryo injected with 1.0 mg/ml activated SPE-

RNA, and these cell types were discernible at gastrulation by the ex-

tension of a (D) normally lateral head fold to both ventral and dorsal

sides of embryo (arrowheads) and in the (E) cuticle by the presence

of denticle bands normally made by lateral cells (arrows).

(F) The most ventral cell fate was induced in an embryo injected with

1.3 mg/ml activated SPE-RNA, as evident by the expression of Twist

at all dorsoventral positions along two-thirds of its length from the

site of injection at the posterior pole. Lateral cell types appeared

to be induced in the anterior one-third of this embryo, as suggested

by the patch of Twist staining at the anterior pole, which is typically

seen in lateralized embryos (Misra et al., 1998). Rescue by activated

SPE-RNA was very efficient; the lateralized gastrulation pattern was

seen in 60/60 embryos injected with 0.05 mg/ml RNA, while Twist ex-

pression was detected in 28/28 embryos injected with 1.3 mg/ml RNA.
rial infections (Figure 4). Their survival rate was not af-
fected by G2 bacterial infection (Figure 4). These results
demonstrate that SPE is essential for host resistance
against fungal and G+ bacterial infection.

SPE Is Required for Toll-Dependent Immune
Gene Expression

To confirm that the immune susceptibility of flies in
which SPE-RNAi was activated is due to the impairment
of Toll-dependent immune gene expression, we exam-
ined the expression of antimicrobial peptides in these
flies. We found that the induction of the antifungal pep-
tide Drs by both fungi and G+ bacteria was severely im-
paired (Figures 5A and 5B). However, expression of the
antibacterial peptide Diptericin (Dipt), which is solely
controlled by the IMD pathway, was not affected after
G2 bacterial infection (Figure 5B). When we examined
these flies for endogenous pro-Spätzle processing in re-
sponse to septic injury, pro-Spätzle processing was
found to be completely blocked (Figure 5C). These re-
sults demonstrate that SPE is essential for infection-
dependent pro-Spätzle processing and Toll-dependent
immune gene expression.

Interestingly, in addition to being required to activate
Toll, SPE appears to be induced by Toll signaling. We
found that SPE gene expression in flies infected by fungi
and G+ bacteria was reduced when Toll signaling, but
not the IMD signaling pathway, was blocked (Figure 5D).
This observation, which is consistent with previous mi-
croarray analysis (De Gregorio et al., 2002b), suggests
that a positive feedback loop involving Toll signaling
regulates the level of SPE.

SPE Is Downstream of the psh

and PGRP-SA Pathways
Toll signaling in response to fungal or G+ bacterial infec-
tion requires psh, which encodes a CLIP serine protease
(Ligoxygakis et al., 2002a), or the PRRs GNBP1 and
PGRP-SA (Gobert et al., 2003; Michel et al., 2001), re-
spectively. To determine their epistatic relationship
with SPE, we overexpressed psh or both GNBP1 and
PGRP-SA while simultaneously activating SPE-RNAi.
We found that induction of Drs by overexpression of
psh or GNBP1 and PGRP-SA was completely blocked
when SPE-RNAi was activated (Figure 6A). This result in-
dicates that psh and the PRRs GNBP1 and PGRP-SA re-
quire SPE to activate Toll signaling during fungal and G+
bacterial infections, respectively.
Figure 4. SPE Is Essential for Host Resis-

tance against Fungal and G+ Bacterial Infec-

tion, but Not G2 Bacterial Infection

Flies in which the SPE-RNAi construct was

induced (UAS-SPE-RNAi; Da-GAL4) were

infected with the fungus B. bassiana, the G+

bacterium E. faecalis, or the G2 bacterium

E. carotovora carotovora-15, and their sur-

vival rates (%) were measured. The Da-GAL4,

spzrm7, PGRP-SAseml, psh4, and DreddB118

flies were used as controls. Results are ex-

pressed as the mean and standard deviations

of at least three independent experiments.
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Figure 5. SPE Is Essential for Infection-Induced Spätzle Processing and Toll-Dependent Immune Gene Expression

(A) Expression of Drs-GFP after fungal (B. bassiana) or G+ bacterial (M. luteus) infection as seen in control flies (Da-GAL4) was blocked by SPE-

RNAi (UAS-SPE-RNAi; Da-GAL4).

(B) Flies in which SPE-RNAi was activated (UAS-SPE-RNAi; Da-GAL4) had reduced levels of Drosomycin mRNA in response to infection with

either B. bassiana or M. luteus, which are known to activate the Toll signaling pathway. They showed normal levels of Diptericin expression

in response to infection with the G2 bacteria E. caratovora carotovora-15 (Ecc-15), which activates the IMD pathway. Mutations that block

the Toll (psh4, spzrm7, and PGRP-SAseml) and IMD (DreddB118) pathways were used as controls. Drosomycin or Diptericin expression is shown

relative to the 100% level in infected control flies (Da-GAL4). T bars represent the standard deviation of at least three independent experiments.

(C) Spätzle processing in flies seen after 1.5 hr of infection with the mixture of B. bassiana and M. luteus (Da-GAL4, challenged) was blocked by

SPE-RNAi (UAS-SPE-RNAi; Da-GAL4, challenged). Spätzle (spz) was detected by Western blot analysis of immunoprecipitates from fly extracts

by using an anti-Spätzle antibody in both steps. The entire extract of flies (UAS-aSPZ/Da-GAL4) expressing the processed active form of Spätzle

was used as a control size marker.

(D) SPE can be rapidly upregulated in response to infection via the Toll pathway, but not the IMD pathway. Wild-type (wt) flies or flies mutant for

the Toll (spzrm7) or IMD (DreddB118) pathway were infected with B. bassiana or M. luteus as previously described (Lemaitre et al., 1996). The

amount of SPE expression was measured at 6 hr postinfection by real-time PCR, and the results are shown relative to the arbitrary level of 1

in unchallenged flies. T bars represent the standard deviation of at least three independent experiments.
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Figure 6. SPE Is Activated by Both psh- and PGRP-SA/GNBP1-Dependent Pathways

(A) Induction of Drosomycin in flies by overexpression of (b) psh or (d) GNBP1 and PGRP-SA is blocked by (c or e) SPE-RNAi. The amount of

Drosomycin expression in the wild-type flies in the absence of infection was taken arbitrarily to be 1, and the results are presented as relative

expression levels. T bars represent the mean and standard deviations of at least three independent experiments.

(B) The processed form of SPE corresponding to activated SPE (aSPE, arrow) from the zymogen form of SPE (arrowhead) is detected in trans-

genic flies (a: UAS-pro-SPE-wt/+; Hs-GAL4/+) after 1 hr of fungal (F) or G+ bacterial infection, but not after 1 hr of G2 bacterial infection. It is also

not detected in transgenic flies (b: UAS-pro-SPE-mut/+; Hs-GAL4/+) expressing SPE with a mutant zymogen activation site (DA-IFGG rather than

DR-IFGG). NI represents the uninfected control. Fly extracts (40 mg total protein) were analyzed by Western blot with anti-V5 antibody to detect

epitope-tagged SPE.

(C) Processing of pro-SPE (arrowhead) to the activated form (aSPE, arrow) after fungal (F) or G+ bacterial infection was blocked in flies mutant for

(b) psh (psh4; UAS-SPE-wt/+; Hs-GAL4/+) or (c) PGRP-SA (PGRP-SAseml; UAS-SPE-wt/+; Hs-GAL4/+). The (a) UAS-SPE-wt/+; Hs-GAL4/+ flies

were used as a positive control. The entire extract of flies (UAS-aSPE/+; Hs-GAL4/+) expressing the processed active form of SPE was used as

a control size marker. Western blot analysis was performed as described in (B) above.
We next investigated the possibility that psh and
PGRP-SA function upstream to promote processing of
SPE to an active protease. In flies expressing an epi-
tope-tagged version of the SPE zymogen, infection by
either fungi or G+ bacteria, but not by G2 bacteria, re-
sulted in the appearance of a polypeptide correspond-
ing in predicted size (w37 kDa) to the C-terminal cata-
lytic domain of SPE (Figure 6B). This polypeptide was
not detected under the same conditions in flies express-
ing a mutant form of SPE in which the cleavage site for
zymogen activation was mutated from DRYIFGG to
DAYIFGG (Figure 6B). Furthermore, production of this
polypeptide in response to fungal or G+ bacterial infec-
tion was completely blocked in flies mutant for psh
(Ligoxygakis et al., 2002a) or PGRP-SA (Michel et al.,
2001), respectively (Figure 6C). These results demon-
strate that psh and PGRP-SA function to promote pro-
cessing of the SPE zymogen to an active protease in re-
sponse to fungal and G+ bacterial infection. Thus, SPE is
the terminal protease activated by two distinct path-
ways, as defined by psh and PGRP-SA, leading to acti-
vation of Toll signaling during the immune response.

Discussion

We have identified a serine protease named SPE that
processes the Spätzle protein to generate the ligand
that activates Toll signaling and presented evidence
that this function of SPE is essential for the immune re-
sponse to fungal and G+ bacterial infection in Drosoph-
ila. SPE therefore functions in the immune response as
the counterpart of the Easter protease that activates
Spätzle and Toll signaling to establish dorsoventral po-
larity of the Drosophila embryo.

An important question is how SPE itself is activated
during the immune response. SPE does not appear to
be activated by Snake, the protease that activates Eas-
ter, as SPE must be preactivated to rescue ventral and
lateral development in embryos lacking Easter (Figure 3
and Results); moreover, the SPE zymogen is not cleaved
by Snake in vitro (Figure S4). One candidate to be a direct
activator of SPE is the protease encoded by psh, which
is required to activate Toll signaling in response to fun-
gal infection (Ligoxygakis et al., 2002a) and, as we have
shown, is also required to process SPE into an active
protease (Figure 6). However, the SPE zymogen is not
cleaved by the Psh protease when coexpressed in hu-
man embryonic kidney cells (data not shown), suggest-
ing that another protease directly activates SPE. While
the direct activator of SPE still needs to be identified,
our work has nonetheless defined a new, to our knowl-
edge, protease cascade involving Psh and SPE with
a role in immunity. As SPE is also activated during the
immune response to G+ bacterial infection, which does
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Figure 7. Protease Cascades Involved in Im-

mune and Developmental Signaling

Depicted are several protease cascades in

immunity and development, including the

one involving SPE described in this study.

See Discussion for details.
not involve psh, there may exist another protease cas-
cade in which SPE is activated (Figures 6 and 7). The pos-
sible existence of two protease cascades that converge
on SPE as a terminal protease provides for a versatile im-
mune system in which the same signaling pathway that
activates a potent immune response can be used for de-
fense against distinct pathogens. Fungal and G+ bacte-
rial infection also appears to trigger the activation of
another cascade in which the terminal protease, pro-
PO activating enzyme (PPAE), activates a key enzyme in
the melanization reaction that encapsulates pathogens
(Ashida and Brey, 1995, 1998; Ashida and Yamazaki,
1990; De Gregorio et al., 2002a; Ochiai and Ashida, 2004;
Satoh et al., 1999) (Figure 7). The activation of two differ-
ent immune responses involving SPE and PPAE by a
common trigger would be an advantageous mechanism
for enhancing host survival after microbial infection.

Protease cascades have diverse biological roles in
vertebrates and invertebrates, ranging from digestive
processes to fertilization, immunity, development, and
tissue remodeling (Krem and Cera, 2002). Our work
highlights the functional relationships between protease
cascades involved in distinct processes such as embry-
onic development and innate immunity. SPE and Easter
are the terminal proteases of two different protease cas-
cades involved in development and immunity, yet both
process the Spätzle protein to activate the Toll signaling
pathway. The essential difference between SPE and
Easter appears to be that they require distinct mecha-
nisms for activation, which allows the Toll signaling
pathway to be activated in response to different triggers
and thus used in very different physiological processes.
Another link between development and immunity is pro-
vided by Spn27A, a serine protease inhibitor that regu-
lates both Easter and the pro-PO cascade (De Gregorio
et al., 2002a; Hashimoto et al., 2003; Ligoxygakis et al.,
2002b, 2003) (Figure 7). Interestingly, Spn27A does not
appear to regulate SPE, as evidenced by the fact that Toll
signaling is not constitutively activated in flies mutant
for Spn27A (De Gregorio et al., 2002a). Thus, although
SPE and Easter possess common substrate specificity
and similar enzymatic activity, the striking regulatory
differences between SPE and Easter in terms of their
activation/inhibition mode may confer dual physiological
functions on the Spätzle-Toll signaling cassette. These
structural and functional relationships between the pro-
tease cascades involved in Drosophila development
and immunity support the idea that an ancestral prote-
ase cascade gave rise to those with diverse functions
in present day organisms (Krem and Cera, 2002).

Experimental Procedures

Constructs and Cell Transfection

The pMT/V5-His vector (Invitrogen) was used for protein expression

in transfected Drosophila S2 cells, the pUAST vector was used for

protein expression in transgenic flies, and the pSP64T vector was

used for synthesis of RNA for embryo injection. Pro-SPE-wt is full-

length SPE (amino acids 1–400), activated SPE consists of the Easter

signal peptide fused directly to the SPE catalytic domain (amino

acids 135–400), pro-SPE-mut has a mutant zymogen activation

site (DA-IFGG) created by site-directed mutagenesis, activated EA

was made as described previously (Chasan et al., 1992), pro-Spätzle

is full-length Spätzle (amino acids 1–227), the active form of Spätzle

was made by fusing signal peptide directly to the C-terminal 106

amino acids (122–227), and pro-Spätzle-mut has a mutant process-

ing site (L121–N122) created by site-directed mutagenesis. In both

pro-SPE-wt and pro-SPE-mut, the catalytic Ser at position 346

was mutated to Ala to stabilize the active form after zymogen cleav-

age as described (LeMosy et al., 2001).
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To make the SPE-RNAi construct, a DNA fragment encoding

amino acids 15–193 of SPE was amplified by PCR with a cDNA tem-

plate. In order to eliminate potential problems with nonspecificity,

we verified that the double-stranded RNA made from this DNA

does not have a perfect match of 19–21 nucleotides to other sequen-

ces in the fly genome by BLAST analysis. The amplified DNA frag-

ment was subcloned in an inverted orientation, with an intronic

spacer in the middle (Reichhart et al., 2002), to make pUAST-SPE-

RNAi.

Drosophila S2 cells (ATCC CRL-1963) were maintained exactly as

described previously (Han et al., 1998). Transfection of these cells

was performed according to a standard protocol with CaPO4 (Di No-

cera and Dawid, 1983), and protein expression was induced in cells

by the addition of CuSO4 to the culture medium at a final concentra-

tion of 500 mM. Cells were induced for 48 hr before harvesting (Kim

et al., 2000a).

Fly Strains

UAS constructs (pUAST-SPE-RNAi, pUAST-activated-SPE, pUAST-

pro-SPE-wt, and pUAST-pro-SPE-mt) were injected into w1118 em-

bryos to generate transgenic animals by P element-mediated trans-

formation (Rubin and Spradling, 1982). The fly stocks used in this

study have been described previously: spzrm7 (Lemaitre et al.,

1996); psh4 (Ligoxygakis et al., 2002a); PGRP-SAseml (Michel et al.,

2001); DreddB118 (Leulier et al., 2000); ea4 and ea5022rx1 (Chasan

and Anderson, 1989); Da-GAL4, Hs-GAL4, and c564-GAL4 (Ligoxy-

gakis et al., 2002a; Takehana et al., 2004); UAS-psh (Ligoxygakis

et al., 2002a), UAS-activated-Easter (Ligoxygakis et al., 2002a),

UAS-GNBP1 (Gobert et al., 2003), UAS-PGRP-SA (Gobert et al.,

2003), and UAS-active-Spätzle (Pili-Floury et al., 2004); and Drs-

GFP (Ferrandon et al., 1998).

Antibodies

Thioredoxin fusion proteins containing the BAEEase catalytic do-

main (S84–Q369), the BAEEase CLIP domain (Q25–R83), or V144–

G243 of Drosophila Spätzle (Morisato and Anderson, 1995) were

synthesized by using the E. coli expression system pET Trx fusion

System 32 (Novagen) according to the manufacturer’s instructions.

The recombinant proteins were purified to homogeneity by chroma-

tography on Superdex 75 pg and reversed-phase octyl (wide pore

from YMC, AP-203) columns. The purified recombinant proteins

(0.30–0.35 mg) in physiological saline were emulsified with Freund’s

incomplete adjuvant and injected subcutaneously into rabbits.

Blood from the rabbits was collected after two additional booster in-

jections administered at 14-day intervals. IgG fractions from the im-

munized rabbit sera were purified by Protein-A Sepharose column

chromatography. Anti-V5 antibody was purchased from Invitrogen.

Real-Time Quantitative PCR Analysis

Total RNA was extracted from cells and flies with RNAzol reagent.

The cDNA was synthesized by using a first cDNA synthesis kit

(Roche) according to the manufacturer’s instructions. Fluorescence

real-time PCR was performed with double-stranded DNA dye SYBR

green (Perkin-Elmer) to quantify the amount of gene expression.

Primer pairs for Drs (sense, 50-GCAGATCAAGTACTTGTTCGC

CC-30; antisense, 50-CTTCGCACCAGCACTTCAGACTGG-30), Dipt

(sense, 50-GGCTTATCCGATGCCCGACG-30; antisense, 50-TCTGTA

GGTGTAGGTGCTTCC-30), SPE (sense, 50-GGCTGGGGACTTACC

GAGAAC-30; antisense, 50-ACCGCATGTATCCACGCCCAACTG-30),

and the control Rp49 (sense, 50-AGATCGTGAAGAAGCGCAC

CAAG-30; antisense, 50-CACCAGGAACTTCTTGAATCCGG-30) were

used to detect the target gene transcripts. All samples were ana-

lyzed in triplicate, and the levels of mRNAs detected were normal-

ized to the control Rp49 values as previously described (Leulier

et al., 2003).

Embryo Injections

RNA for injection into embryos was made by SP6 transcription by

using the mMessage mMachine kit (Ambion). Embryos with no de-

tectable Easter were obtained 0–1 hr after egg deposition from

ea4/ea5022rx1 females and were injected according to a standard pro-

cedure (Anderson and Nusslein-Volhard, 1984). Injected embryos

were observed during gastrulation, and their cuticles were prepared

as previously described (Wieschaus and Nüsslein-Volhard, 1986).

Immunostaining of injected embryos was performed by using
anti-Twist antibodies provided by Siegfried Roth (Universität zu

Köln) and diaminobenzidine as the histochemical reagent essentially

as described earlier (Patel et al., 1994; Stein and Stevens, 1991).

Supplemental Data

Supplemental Data including Supplemental Experimental

Procedures, figures, and references are available at http://www.

developmentalcell.com/cgi/content/full/10/1/45/DC1/.
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