44 research outputs found

    From far-field to near-field micro- and nanoparticle optical trapping

    Get PDF
    Optical tweezers is a very well-established technique that has developed into a standard tool for trapping and manipulating micron and submicron particles with great success in the last decades. Although the nature of light enforces restrictions on the minimum particle size that can be efficiently trapped due to Abbe's diffraction limit, scientists have managed to overcome this problem by engineering new devices that exploit near-field effects. Nowadays, metallic nanostructures can be fabricated which, under laser illumination, produce a secondary plasmonic field that does not suffer from the diffraction limit. This advance offers a great improvement in nanoparticle trapping, as it relaxes the trapping requirements compared to conventional optical tweezers. In this work, we review the fundamentals of conventional optical tweezers, the so-called plasmonic tweezers, and related phenomena. Starting from the conception of the idea by Arthur Ashkin until recent improvements and applications, we present some of the challenges faced by these techniques as well as their future perspectives. Emphasis in this review is on the successive improvements of the techniques and the innovative aspects that have been devised to overcome some of the main challenges.Comment: 15 pages, 10 figure

    Chiral excitation of a single atom by a single photon in a guided mode of a nanofiber

    Get PDF
    We study the interaction between a single two-level atom and a single-photon probe pulse in a guided mode of a nanofiber. We examine the situation of chiral interaction, where the atom has a dipole rotating in the meridional plane of the nanofiber, and the probe pulse is quasilinearly polarized along the radial direction of the atom position in the fiber transverse plane. We show that the atomic excitation probability, the photon transmission flux, and the photon transmission probability depend on the propagation direction of the probe pulse along the fiber axis. In contrast, the reflection flux and the reflection probability do not depend on the propagation direction of the probe pulse. We find that the asymmetry parameter for the atomic excitation probability does not vary in time and does not depend on the probe pulse shape

    Optical force between two coupled identical parallel optical nanofibers

    Get PDF
    We study the optical force between two coupled parallel identical nanofibers using the rigorous array mode theory. We show that the forces of the even array modes are attractive, while the forces of the odd array modes are repulsive. We examine the dependencies of the optical forces on the array mode type, the fiber radius, the light wavelength, and the fiber separation distance. We show that, for a given power and a given separation distance, the absolute value of the force achieves a peak when the fiber radius and the light wavelength are appropriate.Comment: arXiv admin note: text overlap with arXiv:2012.0607

    Optical trap for an atom around the midpoint between two coupled identical parallel optical nanofibers

    Get PDF
    We study the trapping of a ground-state cesium atom in a small region around the midpoint between two coupled identical parallel optical nanofibers. We suggest to use a blue-detuned guided light field in the odd Ez\mathcal{E}_z-sine array mode to produce an optical potential with a local minimum of exact zero at the midpoint between the nanofibers. We find that the effects of the van der Waals potential on the total trapping potential around the minimum point are not significant when the fiber separation distance and the power of the guided light field are large. For appropriate realistic parameters, a net trapping potential with a significant depth of about 1 mK, a large coherence time of several seconds, and a large recoil-heating-limited trap lifetime of several hours can be obtained. We investigate the dependencies of the trapping potential on the power of the guided light field, the fiber radius, the wavelength of light, and the fiber separation distance.Comment: arXiv admin note: text overlap with arXiv:2012.0607

    Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping

    Get PDF
    Plasmonic nanostructures can overcome Abbe's diffraction limit to generate strong gradient fields, enabling efficient optical trapping of nano-sized particles. However, it remains challenging to achieve stable trapping with low incident laser intensity. Here, we demonstrate a Fano resonance-assisted plasmonic optical tweezers (FAPOT), for single nanoparticle trapping in an array of asymmetrical split nano-apertures, milled on a 50 nm gold thin film. Stable trapping is achieved by tuning the trapping wavelength and varying the incident trapping laser intensity. A very large normalized trap stiffness of 8.65 fN/nm/mW for 20 nm polystyrene particles at a near-resonance trapping wavelength of 930 nm was achieved. We show that trap stiffness on resonance is enhanced by a factor of 63 compared to off-resonance conditions. This can be attributed to the ultra-small mode volume, which enables large near-field strengths and a cavity Purcell effect contribution. These results should facilitate strong trapping with low incident trapping laser intensity, thereby providing new options for studying transition paths of single molecules, such as proteins, DNA, or viruses.Comment: 28 pages, 7 figure

    Enhancement of the quadrupole interaction of an atom with guided light of an ultrathin optical fiber

    Get PDF
    We investigate the electric quadrupole interaction of an alkali-metal atom with guided light in the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. We calculate the quadrupole Rabi frequency, the quadrupole oscillator strength, and their enhancement factors. In the example of a rubidium-87 atom, we study the dependencies of the quadrupole Rabi frequency on the quantum numbers of the transition, the mode type, the phase circulation direction, the propagation direction, the orientation of the quantization axis, the position of the atom, and the fiber radius. We find that the root-mean-square (rms) quadrupole Rabi frequency reduces quickly but the quadrupole oscillator strength varies slowly with increasing radial distance. We show that the enhancement factors of the rms Rabi frequency and the oscillator strength do not depend on any characteristics of the internal atomic states except for the atomic transition frequency. The enhancement factor of the oscillator strength can be significant even when the atom is far away from the fiber. We show that, in the case where the atom is positioned on the fiber surface, the oscillator strength for the quasicircularly polarized fundamental mode HE11_{11} has a local minimum at the fiber radius a≃107a\simeq 107 nm, and is larger than that for quasicircularly polarized higher-order hybrid modes, TE modes, and TM modes in the region a<498.2a<498.2 nm

    Enabling self-induced back-action trapping of gold nanoparticles in metamaterial plasmonic tweezers

    Full text link
    The pursuit for efficient nanoparticle trapping with low powers has led to optical tweezers technology moving from the conventional free-space configuration to advanced plasmonic tweezers systems. However, trapping nanoparticles smaller than 10 nm still remains a challenge even for plasmonic tweezers. Proper nanocavity design and excitation has given rise to the self-induced back-action (SIBA) effect offering enhanced trapping stiffness with decreased laser power. In this work, we investigate the SIBA effect in metamaterial tweezers and its synergy with the exhibited Fano resonance. We demonstrate stable trapping of 20 nm gold particles for on-resonant and off-resonant conditions with experimental trap stiffnesses as high as 4.18 fN/(nm*mW/μ\mum2^2 and very low excitation intensity of about 1 mW/μ\mum2^2. Simulations reveal the existence of two different groups of hotspots per unit cell of the metamaterial array. The two hotspots exhibit tunable trap stiffnesses and this is a unique feature of these systems. It can allow for sorting of particles and biological molecules based on their size, shape, and refractive index.Comment: 27 pages, 10 figure
    corecore